Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-04T18:01:51.775Z Has data issue: false hasContentIssue false

The Quartz-Crystal-Microbalance Study of Protein Binding on Lipid Monolayers at the Air-Water Interface

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Interactions of proteins with cell membranes are of great interest in studies such as molecular recognition at cell surfaces. A monolayer lipid film at the airwater interface is useful in cell-surface modeling. Studies in binding behavior of proteins from a solution with a lipid monolayer have been reported by using various in situ techniques: surface-tension measurements, fluorescent-labeling techniques, radio-labeling techniques, fluorescence reflection methods, surface plasmon resonance, and surface-force measurements. These methods have potential applications in the observation of protein bindings. However, they require large, expensive equipment for in situ measurements and present difficulties for quantitatively obtaining the amount of protein adsorbed and the time frame for both binding and dissociation processes.

In this article, we discuss a new, easy in situ technique to detect interactions of adsorbed proteins with a phospholipids monolayer through the use of a Langmuir film balance on which a quartz-crystal microbalance (QCM) is horizontally attached to the lipid monolayer from the air phase (see Figure 1). QCMs are known to be very sensitive mass-measuring devices because their resonance frequency decreases with an increase of a given mass on a QCM at the nanogram level. Adsorption and penetration behavior of proteins can be observed quantitatively from the frequency changes (ΔF) of the QCM on the monolayer and the surface-pressure changes (Δπ) of the monolayer responding to the addition of proteins. The amount of adsorbed proteins (Δm) was also obtained from the frequency changes after lifting and drying the sample in air.

Recently, QCMs have become popular tools for detection of bioactive compounds such as odorous and bitter substances, and for measurement of protein adsorption, immuno-assays, DNA hybridization, enzyme reactions, and cell growth.

Type
Organic Thin Films
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Watanabe, N., Shirakawa, T., Iwahashi, M., and Seimiya, T., Colloid & Polym. Sci. 266 (1988) p. 254.CrossRefGoogle Scholar
2.Ivanova, M. and Panaiotov, I., Colloid and Surfaces 17 (1986) p. 159.CrossRefGoogle Scholar
3.Blankenburg, R., Meller, P., Ringsdorf, H., and Salesse, C., C. Biochemistry 28 (1990) p. 8,214.Google Scholar
4.Heckl, W.H., Thompson, M., and Möhwald, H., Langmuir 5 (1989) p. 390.CrossRefGoogle Scholar
5.Heyn, S-P., Egger, M., and Graub, H.E., J. Phys. Chem. 94 (1990) p. 5,073.CrossRefGoogle Scholar
6.Brash, J.L., Uniyal, S., Pusineri, C., and Schmitt, A.J., Colloid Interface Sci. 95 (1983) p. 28.CrossRefGoogle Scholar
7. (a) Tanimoto, S. and Kitano, H., Langmuir 9 (1993) p. 1,315. (b) Zao, S. and Reichert, W.M., Langmuir 8 (1992) p. 2,785.CrossRefGoogle Scholar
8.Kooyman, R.P.H., Bruijn, H.E., Eenink, R.G., and Greve, J.J., Mol. Structure 218 (1990) p. 345.CrossRefGoogle Scholar
9.Häussling, L., Ringsdorf, H., Schmitt, F-J., and Knoll, W., Langmuir 7 (1991) p. 1,837.CrossRefGoogle Scholar
10.Leckband, D.E., Israelachivili, J.N., Schmitt, F-J., and Knoll, W., Science 255 (1992) p. 1,419.CrossRefGoogle Scholar
11.Okahata, Y. and Ebato, H., Trend in Anal. Chem. 11 (1992) p. 344; Okahata, Y., En-na, G., and Ebato, H., Anal. Chem. 62 (1990) p. 1,431.CrossRefGoogle Scholar
12.Ebara, Y. and Okahata, Y., Langmuir 9 (1993) p. 574.CrossRefGoogle Scholar
13.Tamiya, E., Suzuki, M., and Karube, I., Anal. Chim. Acta 217 (1989) p. 321.Google Scholar
14.Thompson, M., Arthur, C.L., and Dhaliwal, G.K., Anal. Chem. 58 (1986) p. 1,206.CrossRefGoogle Scholar
15.Muramatsu, H., Dicks, J.M., Tamiya, E., and Karube, I., Anal. Chem. 59 (1987) p. 2,760.CrossRefGoogle Scholar
16.Ebersole, R.C. and Ward, M.D., J. Am. Chem. Soc. 110 (1988) p. 8,623.CrossRefGoogle Scholar
17.Ebato, H., Gentry, C.A., Herron, J.N., Mueller, W., Okahata, Y., Ringsdorf, H., and Suci, P.A., Anal. Chem. 66 (1994) p. 1,683.CrossRefGoogle Scholar
18.Okahata, Y., Matsunobu, Y., Ijiro, K., Mukai, M., Murakami, A., and Makino, K., J. Am. Chem. Soc. 114 (1992) p. 8,299.CrossRefGoogle Scholar
19.Ebersole, R.C., Miller, J.A., Moran, J.R., and Ward, M.D., J. Am. Chem. Soc. 112 (1990) p. 3,239.CrossRefGoogle Scholar
20.Yamaguchi, S., Shimomura, T., Tatsuma, T., and Oyama, N., Anal. Chem. 65 (1993) p. 1,925.CrossRefGoogle Scholar
21.Okahata, Y. and Ebara, Y., J. Chem. Soc. Chem. Commun. (1992) p. 116.CrossRefGoogle Scholar
22.Guilbault, G.G., Anal. Chem. 55 (1983) p. 1,682.CrossRefGoogle Scholar
23.Ebersole, R.C., Foss, R.P., and Ward, M.D., Biotechnology 9 (1991) p. 450.Google Scholar
24.Okahata, Y. and Ebato, H., J. Chem. Soc., Perkin Trans. 2 (1991) p. 475.CrossRefGoogle Scholar
25.Sauerbrey, G., Z. Phys. 155 (1959) p. 206.CrossRefGoogle Scholar
26.Kanazawa, K.K. and Gordon, J.G., Anal. Chim. Acta 175 (1985) p. 99; Schmacher, R., Borges, G., and Kanazawa, K.K., Surface Science 163 (1985) p. L621.CrossRefGoogle Scholar
27.Okahata, Y., Ariga, K., and Tanaka, K., Thin Solid Films 210/211 (1992) p. 702.CrossRefGoogle Scholar
28.Ebara, Y. and Okahata, Y., J. Am. Chem. Soc. 116 (1994) p. 11,209.CrossRefGoogle Scholar
29.Kawaguchi, T., Matsumoto, I., and Osawa, T., Biochemistry 13 (1974) p. 3,169.CrossRefGoogle Scholar
30.Novogradsky, A., Biniaminov, M., Ramot, B., and Katchalski, E., Blood 40 (1972) p. 311.CrossRefGoogle Scholar
31.Becker, J.W. Jr., Reeke, G.W., and Edelman, G.M., Nature 259 (1976) p. 406.CrossRefGoogle Scholar
32.Hirabayashi, Y., Hamaoka, A., Matsumoto, M., Matsubara, T., Tagawa, M., Wakabayashi, S., and Taniguchi, M., J. Biol. Chem. 260 (1985) p. 13,328.CrossRefGoogle Scholar
33.Suzuki, Y., Matsunaga, M., and Matsumoto, M., J. Biol. Chem. 260 (1985) p. 1,362.CrossRefGoogle Scholar