Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T08:25:44.009Z Has data issue: false hasContentIssue false

Quantitative Rutherford Backscattering from Thin Films

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Rutherford backscattering spectrometry (RBS) is probably one of the most frequently used techniques for quantitative analysis of composition, thickness, and depth profiles of thin solid films or solid samples near the surface region. It has evolved in the past few years from an obscure nuclear technique into a major materials characterization technique. This is primarily due to its simplicity, versatility, and the amount of information it can produce in a short time. Because of its quantitative feature, RBS analysis often serves as a standard for other techniques. The purpose of this article is to introduce the topic to a broad community of materials researchers. Readers who want a more rigorous treatment of the topic for utility purposes can refer to a monograph.

In the early 1960s, several of the low-energy atomic and nuclear physics laboratories started to use their accelerators to do research in solid-state physics. This activity opened up a fertile interdisciplinary area called ion-solid interaction, which impacts materials research significantly.

Type
Quantitative Analysis of Thin Films
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chu, W.K., Mayer, J.W., and Nicolet, M-A., Backscattering Spectrometry (Academic Press, New York, 1978).CrossRefGoogle Scholar
2.MRS Bulletin XII (2) (1987).Google Scholar
3.Ion-Assisted Processing of Electronic Materials, Vol. 17, No. 6 (1992).Google Scholar
4.Zhang, Z.H., unpublished.Google Scholar
5.Robinson, M.T. and Oen, O.S., Conf. Proc: Le Bombardement Ionique, edited by Trillat, J.J. (CNRS, Paris, 1962) and Phys. Rev. 132 (1963) p. 1385.Google Scholar
6.Channeling, Theory, Observation and Applications, edited by Morgan, D.V. (Wiley and Sons, London, 1973).Google Scholar
7.Cho, K., Allen, W.R., Finstad, T.G., Chu, W.K., Liu, J., and Wortman, J.J., Nucl. Instrum. Methods B 718 (1985) p. 265.CrossRefGoogle Scholar
8.Lindhard, J., Mat. Fys. Medd. Dan. Vid. Selsk. 34 (1965) p. 1.Google Scholar
9.Bogh, E., Radiat. Eff. 12 (1972) p. 13.CrossRefGoogle Scholar
10.Abel, F., Amsel, G., Bruneaux, M., and Cohen, C., Phys. Lett. A 42 (1972) p. 165.CrossRefGoogle Scholar
11.Kumakhov, M.A., Phys. Lett. 57 (1976) p. 17.CrossRefGoogle Scholar
12.Alguard, M.J., Swent, R.L., Pantell, R.H., Berman, B. L., Bloom, S.D., and Datz, S., Phys. Rev Lett. 42 (1979) p. 1148.CrossRefGoogle Scholar
13.Andersen, J.U. and Laegsgaard, E., Phys. Rev. Lett. 44 (1980) p. 1079.CrossRefGoogle Scholar
14.Martin, J.A., Nastasi, M., Tesmer, J.R., and Maggiore, C.J., Appl. Phys. Lett. 52 (1988) p. 2177.CrossRefGoogle Scholar
15.Schroyen, D., Bruggeman, M., Dezsi, I., and Langouche, G., Nucl. Instrum. Methods B 15 (1986) p. 341.CrossRefGoogle Scholar
16.Sigurd, D., Bower, R.W., van der Weg, W.E., and Mayer, J.W., Appl. Phys. 45 (1974) p. 1740.CrossRefGoogle Scholar
17.Feldman, L.C., Mayer, J.W., and Picraux, S.T., Materials Analysis by Ion Channeling (Academic Press, New York, 1982).Google Scholar
18.Andersen, J.U., Andreason, O., Davies, J.A., and Uggerhoj, E., Radiat. Eff. 7 (1971) p. 25.CrossRefGoogle Scholar
19.Domeij, B. and Björkqvist, K., Phys. Lett. 14 (1965) p. 127.CrossRefGoogle Scholar
20.Hofsäss, H., Winter, S., Jahn, S.G., Wahl, U., and Recknagel, E., Nucl. Instrum. Methods B 63 (1992) p. 83.CrossRefGoogle Scholar
21.Lindroos, M., Haas, H., De Wachler, J., Pattyn, H., and Langouche, G., to be published.Google Scholar
22.Wu, M.F., Vantomme, A., Langouche, G., Maex, K., Vanderstraeten, H., and Bruynseraede, Y., Appl. Phys. Lett. 57 (1990) p. 1973.CrossRefGoogle Scholar
23.Parikh, N.R., Sandhu, G.S., Yu, N., Chu, W.K., Jackman, T.E., Baribeau, J-M., and Houghton, D.C., Thin Solid Films 163 (1988) p. 455.CrossRefGoogle Scholar
24.Pan, C.K., Zheng, D.C., Finstad, T.G., Chu, W.K., Speriosu, V.S., Nicolet, M-A., and Barrett, J.H., Phys. Rev. B 31 (1985) p. 1270.CrossRefGoogle Scholar
25.Picraux, S.T., Chu, W.K., Allen, W.R., and Ellison, J.A., Nucl. Instrum. Methods B 15 (1986) p. 306.CrossRefGoogle Scholar
26.Chu, W.K., Ellison, J.A., Picraux, S.T., Biefeld, R.M., and Osbourn, G.C., Phys. Rev. Lett. 52 (1984) p. 125.CrossRefGoogle Scholar
27.Picraux, S.T., Biefeld, R.M., Allen, W.R., Chu, W.K., and Ellison, J.A., Phys. Rev. B 38 (1988) p. 11086.CrossRefGoogle Scholar
28.Chu, W.K., Allen, W.R., Picraux, S.T., and Ellison, J.A., Phys. Rev. B 42 (1990) p. 5923.CrossRefGoogle Scholar
29.Feldman, L.C. and Mayer, J.W., Fundamentals of Surface and Thin Film Analysis (North Holland, 1986).Google Scholar