Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T10:34:28.624Z Has data issue: false hasContentIssue false

Quantitative microstructural imaging by scanning Laue x-ray micro- and nanodiffraction

Published online by Cambridge University Press:  08 June 2016

Xian Chen
Affiliation:
Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong; [email protected]
Catherine Dejoie
Affiliation:
Department of Materials, ETH Zürich, Switzerland; [email protected]
Tengfei Jiang
Affiliation:
Department of Materials Science and Engineering and Advanced Materials Processing and Analysis Center, University of Central Florida, USA; [email protected]
Ching-Shun Ku
Affiliation:
Scientific Research Division, National Synchrotron Radiation Research Center, Taiwan; [email protected]
Nobumichi Tamura
Affiliation:
Advanced Light Source, Lawrence Berkeley National Laboratory, USA; [email protected]
Get access

Abstract

Local crystal structure, crystal orientation, and crystal deformation can all be probed by Laue diffraction using a submicron x-ray beam. This technique, employed at a synchrotron facility, is particularly suitable for fast mapping the mechanical and microstructural properties of inhomogeneous multiphase polycrystalline samples, as well as imperfect epitaxial films or crystals. As synchrotron Laue x-ray microdiffraction enters its 20th year of existence and new synchrotron nanoprobe facilities are being built and commissioned around the world, we take the opportunity to overview current capabilities as well as the latest technical developments. Fast data collection provided by state-of-the-art area detectors and fully automated pattern indexing algorithms optimized for speed make it possible to map large portions of a sample with fine step size and obtain quantitative images of its microstructure in near real time. We extrapolate how the technique is anticipated to evolve in the near future and its potential emerging applications at a free-electron laser facility.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Friedrich, W., Knipping, P., Laue, M.V., Sitzungsber. Königlich-Bayerischen Akad. der Wiss. Math. Phys. Kla. 42, 303 (1912).Google Scholar
Bragg, W.L., Proc. Cambridge Philos. Soc. 17, 43 (1913).Google Scholar
Woolfson, M.M., An Introduction to X-Ray Crystallography (Cambridge University Press, Cambridge, 1997).Google Scholar
Dinnebier, R.E., Billinge, S.L.J., Eds., Powder Diffraction: Theory and Practice (RSC Publishing, Cambridge, 2008).Google Scholar
Bowen, D.K., Tanner, B.K., High Resolution X-Ray Diffractometry and Topography (CRC Press, Boca Raton, FL, 2005).Google Scholar
Moffat, K., Szebenyi, D., Bilderback, D., Science 223 (4643), 1423 (1984).Google Scholar
Helliwell, J.R., Habash, J., Cruikshank, D.W.J., Harding, M.M., Greenhough, T.J., Campbell, J.W., Clifton, I.J., Elder, M., Machin, P.A., Papiz, M.Z., Zurek, S., J. Appl. Crystallogr. 22 (5), 483 (1989).Google Scholar
Moffat, K., Helliwell, J.R., in Synchrotron Radiation in Chemistry and Biology III, Mandelkow, E., Ed. (Springer-Verlag, Berlin, 1989), p. 61.Google Scholar
Bourgeois, D., Vallone, B., Schotte, F., Arcovito, A., Miele, A.E., Sciara, G., Wulff, M., Anfinrud, P., Brunori, M., Proc. Natl. Acad. Sci. U.S.A. 100 (15), 8704 (2003).Google Scholar
Wenk, H.R., Heidelbach, F., Chateigner, D., Zontone, F., J. Synchrotron Radiat. 4 (2), 95 (1997).CrossRefGoogle Scholar
Chung, J., Ice, G., J. Appl. Phys. 86 (9), 5249 (1999).Google Scholar
Tschauner, O., Asimow, P.D., Kostandova, N., Ahrens, T.J., Ma, C., Sinogeikin, S., Liu, Z., Fakra, S., Tamura, N., Proc. Natl. Acad. Sci. U.S.A. 106 (33), 13691 (2009).Google Scholar
Mehta, A., Gong, X.-Y., Imbeni, V., Pelton, A.R., Ritchie, R.O., Adv. Mater. 19 (9), 1183 (2007).Google Scholar
Valek, B.C., Bravman, J.C., Tamura, N., MacDowell, A.A., Celestre, R.S., Padmore, H.A., Spolenak, R., Brown, W.L., Batterman, B.W., Patel, J.R., Appl. Phys. Lett. 81 (22), 4168 (2002).Google Scholar
Bozzola, J.J., Russell, L.D., Electron Microscopy: Principles and Techniques for Biologists (Jones & Bartlett Learning, Sudbury, MA, 1999).Google Scholar
Myers, O.E. Jr., Am. J. Phys. 19 (6), 359 (1951).Google Scholar
Lai, B., Yun, W., Legnini, D.G., Xiao, Y., Chrzas, J., Vicario, P.J., White, V., Bajikar, S., Denton, D., Cerrina, F., Di Fabrizio, E., Gentili, M., Grella, L., Baciocchi, M., Appl. Phys. Lett. 61 (16), 1877 (1992).Google Scholar
Chu, Y.S., Yi, J.M., De Carlo, F., Shen, Q., Lee, W.-K., Wu, H.J., Wang, C.L., Wang, J.Y., Liu, C.J., Wang, C.H., Wu, S.R., Chien, C.C., Hwu, Y., Tkachuck, A., Yun, W., Feser, M., Liang, K.S., Yang, C.S., Je, J.H., Margaritondo, G., Appl. Phys. Lett. 92 (10), 103119 (2008).Google Scholar
Chao, W., Kim, J., Rekawa, S., Fischer, P., Anderson, E.H., Opt. Express 17 (20), 17669 (2009).Google Scholar
Snigirev, A., Kohn, V., Snigireva, I., Lengeler, B., Nature 384 (6604), 49 (1996).Google Scholar
Snigirev, A.A., Snigireva, I., Drakopoulos, M., Nazmov, V., Reznikova, E., Kuznetsov, S., Grigoriev, M., Mohr, J., Saile, V., Proc. SPIE 5195, 21 (2003).CrossRefGoogle Scholar
Schroer, C.G., Kuhlmann, M., Hunger, U.T., Günzler, T.F., Kurapova, O., Feste, S., Frehse, F., Lengeler, B., Drakopoulos, M., Somogyi, A., Simionovici, A.S., Snigirev, A., Snigireva, I., Schug, C., Schröder, W.H., Appl. Phys. Lett. 82 (9), 1485 (2003).Google Scholar
Kirkpatrick, P., Baez, A.V., J. Opt. Soc. Am. 38 (9), 766 (1948).Google Scholar
Mimura, H., Matsuyama, S., Yumoto, H., Hara, H., Yamamura, K., Sano, Y., Shibahara, M., Endo, K., Mori, Y., Nishino, Y., Jpn. J. Appl. Phys. 44 (18), L539 (2005).Google Scholar
Liu, W., Ice, G.E., Tischler, J.Z., Khounsary, A., Liu, C., Assoufid, L., Macrander, A.T., Rev. Sci. Instrum. 76 (11), 113701 (2005).Google Scholar
Liu, W., Ice, G.E., Assoufid, L., Liu, C., Shi, B., Khachatryan, R., Qian, J., Zschack, P., Tischler, J.Z., Choi, J.-Y., J. Synchrotron Radiat. 18 (4), 575 (2011).Google Scholar
Ice, G.E., Larson, B.C., Adv. Eng. Mater. 2 (10), 643 (2000).Google Scholar
Kunz, M., Tamura, N., Chen, K., MacDowell, A.A., Celestre, R.S., Church, M.M., Fakra, S., Domning, E.E., Glossinger, J.M., Kirschman, J.L., Morrison, G.Y., Plate, D.W., Smith, B.V., Warwick, T., Yashchuk, V.V., Padmore, H.A., Ustundag, E., Rev. Sci. Instrum. 80 (3), 035108 (2009).Google Scholar
Tamura, N., Celestre, R.S., MacDowell, A.A., Padmore, H.A., Spolenak, R., Valek, B.C., Meier Chang, N., Manceau, A., Patel, J.R., Rev. Sci. Instrum. 73 (3), 1369 (2002).Google Scholar
Ulrich, O., Biquard, X., Bleuet, P., Geaymond, O., Gergaud, P., Micha, J.S., Robach, O., Rieutord, F., Rev. Sci. Instrum. 82 (3), 033908 (2011).Google Scholar
Park, J.-H., Park, J., Lee, K.-B., Koo, T.-Y., Shun, H.S., Ko, Y.D., Chung, J.-S., Hwang, J.Y., Jeong, S.-Y., Appl. Phys. Lett. 91 (1), 012906 (2007).Google Scholar
Feng, R., Gerson, A., Ice, G., AIP Conf. Proc. 879, 872 (2007).Google Scholar
Maaβ, R., Grolimund, D., Petegem, S.V., Appl. Phys. Lett. 89 (15), 151905 (2006).Google Scholar
Hofmann, F., Song, X., Dolbnya, I., Abbey, B., Korsunsky, A.M., Procedia Eng. 1 (1), 193 (2009).Google Scholar
Tamura, N., Kunz, M., Chen, K., Mater. Sci. Eng. A 524 (1), 28 (2009).CrossRefGoogle Scholar
Sheng, Y., Church, M., Valeriy, V.Y., Goldberg, K., Celestre, R.S., McKinneyr, W.R., Kirschman, J., Morrison, G.Y., Noll, T., Warwick, T., Padmore, H.A., X-Ray Opt. Instrum. 2010, 784732 (2010).Google Scholar
Liang, K.S., Luo, G.-H., Chen, J.-R., Huang, D.-J., Hwang, C.-S., Wang, C., Chen, C.T., Synchrotron Radiat. News 22 (5), 13 (2009).Google Scholar
Greninger, A.B., Trans. Am. Inst. Min. Metall. Pet. Eng. 117, 61 (1935).Google Scholar
Chung, J.S., Tamura, N., Ice, G.E., Larson, B.C., Budai, J.D., “X-Ray Microbeam Measurement of Local Texture and Strain in Metals,”Mater. Res. Soc. Symp. Proc. 563, Brown, D., Verbruggen, A.H., Volkert, C.A., Eds. (Materials Research Society, Warrendale, PA, 1999), p. 169.Google Scholar
Tamura, N., Valek, B.C., Spolenak, R., MacDowell, A.A., Celestre, R.S., Padmore, H.A., Brown, W.L., Marieb, T., Bravman, J.C., Batterman, B.W., Patel, J.R., “Materials, Technology, and Reliability for Advanced Interconnects and Low-k Dielectrics,”Mater. Res. Soc. Symp. Proc. 612, Maex, K., Joo, Y.-C., Oehrlein, G.S., Ogawa, S., Wetzel, J.T., Eds. (Materials Research Society, Warrendale, PA, 2000).Google Scholar
Barabash, R.I., Ice, G.E., Larson, B.C., Yang, W., Rev. Sci. Instrum. 73 (3), 1652 (2002).Google Scholar
Larson, B.C., Yang, W., Ice, G.E., Budai, J.D., Tischler, J.Z., Nature 415 (6874), 887 (2002).Google Scholar
Liu, W., Ice, G.E., in Strain and Dislocation Gradients from Diffraction, Barabash, R., Ice, G.E., Eds. (World Scientific, Singapore, 2014), p. 53.Google Scholar
Budai, J.D., Yang, W., Larson, B.C., Tischler, J.Z., Liu, W., Weiland, H., Ice, G.E., Mater. Sci. Forum 467–470, 1373 (2004).Google Scholar
Morgan, N.B., Mater. Sci. Eng. A 378 (1), 16 (2004).Google Scholar
Karaca, H.E., Karaman, I., Basaran, B., Ren, Y., Chumlyakov, Y.I., Maier, H.J., Adv. Funct. Mater. 19 (7), 983 (2009).Google Scholar
Srivastava, V., Chen, X., James, R.D., Appl. Phys. Lett. 97 (1), 014101 (2010).Google Scholar
Srivastava, V., Song, Y., Bhatti, K., James, R.D., Adv. Energy Mater. 1 (1), 97 (2011).Google Scholar
Song, Y., Bhatti, K.P., Srivastava, V., Leighton, C., James, R.D., Energy Environ. Sci. 6 (4), 1315 (2013).Google Scholar
Song, Y., Phys. Chem. Chem. Phys. 16 (25), 12750 (2014).Google Scholar
Chen, X., Cao, S., Ikeda, T., Srivastava, V., Snyder, G.J., Schryvers, D., James, R.D., Acta Mater. 59 (15), 6124 (2011).Google Scholar
Song, Y., Chen, X., Dabada, V., Shield, T.W., James, R.D., Nature 502 (7469), 85 (2013).Google Scholar
Chluba, C., Ge, W., de Miranda, R.L., Strobel, J., Kienle, L., Quandt, E., Wuttig, M., Science 348 (6238), 1004 (2015).Google Scholar
Chen, X., Srivastava, V., Dabade, V., James, R.D., J. Mech. Phys. Solids 61 (12), 2566 (2013).Google Scholar
Chen, X., Song, Y., Tamura, N., James, R.D., J. Mech. Phys. Solids (2016), doi:10.1016/j.jmps.2016.02.009.Google Scholar
Wang, P.-C., Cargill, G.S. III, Noyan, I.C., Hu, C.-K., Appl. Phys. Lett. 72 (11), 1296 (1998).Google Scholar
Ho, P.S., Kwok, T., Rep. Prog. Phys. 52 (3), 301 (1989).Google Scholar
Valek, B.C., Tamura, N., Spolenak, R., Caldwell, W.A., MacDowell, A.A., Celestre, R.S., Padmore, H.A., Bravman, J.C., Batterman, B.W., Nix, W.D., Patel, J.R., J. Appl. Phys. 94 (6), 3757 (2003).Google Scholar
Barabash, R.I., Ice, G.E., Tamura, N., Valek, B.C., Bravman, J.C., Spolenak, R., Patel, J.R., J. Appl. Phys. 93 (9), 5701 (2003).Google Scholar
Chen, K., Tamura, N., Valek, B.C., Tu, K.-N., J. Appl. Phys. 104 (1), 013513 (2008).Google Scholar
Budiman, A.S., Besser, P.R., Hau-Riege, C.S., Marathe, A., Joo, Y.-C., Tamura, N., Patel, J.R., Nix, W.D., J. Electron. Mater. 38 (3), 379 (2009).Google Scholar
Chen, K., Tamura, N., Tu, K.-N., In-Situ Study of Electromigration-Induced Grain Rotation in Pb-Free Solder Joint by Synchrotron Microdiffraction,”Mater. Res. Soc. Symp. Proc. 1116, Greer, J.R., Vlassak, J., Daniel, J., Tsui, T., Eds. (Materials Research Society, Warrendale, PA, 2008), p. 1116–I05–06.Google Scholar
Chen, K., Tamura, N., Kunz, M., Tu, K.-N., Lai, Y.-S., J. Appl. Phys. 106 (2), 023502 (2009).Google Scholar
Iyer, S.S., MRS Bull. 40 (3), 225 (2015).Google Scholar
Jiang, T., Im, J., Huang, R., Ho, P.S., MRS Bull. 40 (3), 248 (2015).Google Scholar
Budiman, A.S., Shin, H.-A.-S., Kim, B.-J., Hwang, S.-H., Son, H.-Y., Suh, M.-S., Chung, Q.-H., Byun, K.-Y., Tamura, N., Kunz, M., Choo, Y.-C., Microelectron. Reliab. 52 (3), 530 (2012).Google Scholar
Jiang, T., Wu, C., Spinella, L., Im, J., Tamura, N., Kunz, M., Son, H.-Y., Kim, B.G., Huang, R., Ho, P.-S., Appl. Phys. Lett. 103 (21), 211906 (2013).Google Scholar
Jiang, T., Wu, C., Tamura, N., Kunz, M., Kim, B.G., Son, H.-Y., Suh, M.S., Im, J., Huang, R., Ho, P.-S., IEEE Trans. Device Mater. Reliab. 14 (2), 698 (2014).Google Scholar
Liu, X., Thadesar, P.A., Taylor, C.L., Kunz, M., Tamura, N., Bakir, M.S., Sitaraman, S.K., Appl. Phys. Lett. 103 (2), 022107 (2013).Google Scholar
Liu, X., Thadesar, P.A., Taylor, C.L., Kunz, M., Tamura, N., Bakir, M.S., Sitaraman, S.K., J. Appl. Phys. 114 (6), 064908 (2013).Google Scholar
Deslippe, J., Essiari, A., Patton, S.J., Samak, T., Tull, C.E., Hexamer, A., Kumar, D., Parkinson, D., Stewart, P., Proc. 9th Workshop Workflows in Support of Large-Scale Sci. IEEE Press, (2014), p. 31.Google Scholar
Li, Y., Qian, D., Xue, J., Wan, J., Zhang, A., Tamura, N., Song, Z., Chen, K., Appl. Phys. Lett. 107 (18), 181902 (2015).Google Scholar
Xue, J., Zhang, A., Li, Y., Qian, D., Wan, J., Qi, B., Tamura, N., Song, Z., Chen, K., Sci. Rep. 5, 14903 (2015).Google Scholar
Dejoie, C., Kunz, M., Tamura, N., Bousige, C., Chen, K., Teat, S., Beavers, C., Baerlocher, C., J. Appl. Crystallogr. 44 (1), 177 (2011).Google Scholar
Dejoie, C., Martinetto, P., Tamura, N., Kunz, M., Porcher, F., Bordat, P., Brown, R., Dooryhée, E., Anne, M., McCusker, L.B., J. Phys. Chem. C 118 (48), 28032 (2014).Google Scholar
Dejoie, C., McCusker, L.B., Baerlocher, C., Abela, R., Patterson, B.D., Kunz, M., Tamura, N., J. Appl. Crystallogr. 46 (3), 791 (2013).Google Scholar
Chapman, H.N., Fromme, P., Barty, A., Whitem, T.A., Kirian, R.A., Aquila, A., Hunter, M.S., Schulz, J., DePonte, D.P., Weierstall, U., Doak, R.B., Maia, F.R.N.C., Martin, A.V., Schlichting, I., Lomb, L., Coppola, N., Shoeman, R.L., Epp, S.W., Hartmann, R., Rolles, D., Rudenko, A., Foucar, L., Kimmel, N., Weidenspointner, G., Holl, P., Liang, M., Barthelmess, M., Caleman, C., Boutet, S., Bogan, M.J., Krzywinski, J., Bostedt, C., Bajt, S., Gumprecht, L., Rudek, B., Erk, B., Schmidt, C., Hömke, A., Reich, C., Pietschner, D., Strüder, L., Hauser, G., Gorke, H., Ullrich, J., Herrmann, S., Schaller, G., Schopper, F., Soltau, H., Kühnel, K.-U., Messerschmidt, M., Bozek, J.D., Hau-Riege, S.P., Frank, M., Hampton, C.Y., Sierra, R.G., Starodub, D., Williams, G.J., Hajdu, J., Timneanu, N., Seibert, M.M., Andreasson, J., Rocker, A., Jönsson, O., Svenda, M., Stern, S., Nass, K., Andritschke, R., Schröter, C.-D., Krasniqi, F., Bott, M., Schmidt, K.E., Wang, X., Grotjohann, I., Holton, J.M., Barends, T.R.M., Neutze, R., Marchesini, S., Fromme, R., Schorb, S., Rupp, D., Adolph, M., Gorkhover, T., Andersson, I., Hirsemann, H., Potdevin, G., Graafsma, H., Nilsson, B., Spence, J.C.H., Nature 470 (7332), 73 (2011).Google Scholar
Schlichting, I., IUCrJ 2 (2), 246 (2015).Google Scholar
Patterson, B.D., Beaud, P., Braun, H.H., Dejoie, C., Ingold, G., Milne, C., Pattjey, L., Pedrini, B., Szlachentko, J., Abela, R., CHIMIA 68 (1), 73 (2014).Google Scholar
Dejoie, C., McCusker, L.B., Baerlocher, C., Kunz, M., Tamura, N., J. Appl. Crystallogr. 46 (6), 1805 (2013).Google Scholar
Dejoie, C., Smeets, S., Baerlocher, C., Tamura, N., Pattison, P., Abela, R., McCusker, L., IUCrJ 2 (3), 361 (2015).Google Scholar
Chen, K., Kunz, M., Tamura, N., Wenk, H.-R., Geology 43 (3), 2015 (2015).Google Scholar
Dejoie, C., Tamura, N., Kunz, M., Goudeau, P., Sciau, P., J. Appl. Crystallogr. 48 (5), 1522 (2015).Google Scholar
Ma, E.Y., Cui, Y.T., Ueda, Y., Tang, S., Chen, K., Tamura, N., Wu, P.M., Fujioka, J., Tokura, Y., Shen, Z.-X., Science 350 (6260), 538 (2015).Google Scholar
Olson, I.C., Metzler, R.A., Tamura, N., Kunz, M., Killian, C.E., Gilbert, P.U.P.A., J. Struct. Biol. 183 (2), 180 (2013).Google Scholar
Barabash, R., Ice, G., Eds., Strain and Dislocation Gradients from Diffraction: Spatially-Resolved Local Structure and Defects (World Scientific, Singapore, 2014).Google Scholar