Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-08T00:24:02.021Z Has data issue: false hasContentIssue false

The Pursuit of the Small: From Grain-Boundary Cavities to Nanocrystalline Metals

Published online by Cambridge University Press:  31 January 2011

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The following article is based on the Von Hippel Award presentation given by Julia Weertman of Northwestern University on December 3, 2003, at the Materials Research Society Fall Meeting in Boston.Weertman received the award for “her lifelong exceptional contributions to understanding the basic deformation processes and failure mechanisms in a wide class of materials, from nanocrystalline metals to high-temperature structural alloys, and for her inspiring role as an educator in materials science.” It has been said that “the best things come in small packages,” and that is certainly in Weertman's mind in this presentation.She has spent much of her career “in pursuit of the small.” In this article, she first looks back at her experiences studying grain-boundary cavities and life in the spaces between grains.She then fast-forwards to modern work on nanocrystalline mechanical behavior, confirming that such nanocrystalline materials are indeed strong, but also brittle.Some of her experiences in studying these phenomena are also described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

References

1Raj, R. and Ashby, M.Metall. Trans. 2 (1971) p.1113.Google Scholar
2Saegusa, T. and Weertman, J.R.Scripta Metall. 12 (1978) p.187.CrossRefGoogle Scholar
3Chen, R.T. and Weertman, J.R.Mater. Sci. Eng. 64 (1984) p.15.CrossRefGoogle Scholar
4Page, R. and Weertman, J.R.Acta Metall. 29 (1981) p.527.Google Scholar
5Page, R.Weertman, J.R. and Roth, M.Acta Metall. 30 (1982) p.1357.Google Scholar
6Yang, M.S.Weertman, J.R. and Roth, M.Scripta Metall. 18 (1984) p.543.CrossRefGoogle Scholar
7Barker, J.G. and Weertman, J.R.Scripta Metall. Mater. 24 (1990) p.227.Google Scholar
8Kikuchi, M. and Weertman, J.R.Scripta Metall. 14 (1980) p.797.Google Scholar
9Saegusa, T.Uemura, M. and Weertman, J.R.Metall. Mater. Trans. A 11A (1980) p.1453.CrossRefGoogle Scholar
10Kikuchi, M.Shiozawa, K. and Weertman, J.R.Acta Metall. 29 (1981) p.1747.CrossRefGoogle Scholar
11Shiozawa, K. and Weertman, J.R.Scripta Metall. 16 (1982) p.735.CrossRefGoogle Scholar
12Shiozawa, K. and Weertman, J.R.Acta Metall. 31 (1983) p.993.Google Scholar
13Processing Section, in Nanostructured Materials, edited by Koch, C.C. (William Andrew, Norwich, NY, 2002) p. 3.Google Scholar
14Gleiter, H.Prog. Mater. Sci. 33 (1989) p. 223.CrossRefGoogle Scholar
15Kung, H.Sanders, P.G. and Weertman, J.R. in Advanced Materials for the 21st Century, edited by Chung, Y.-W.Dunand, D.C.Liaw, P.K. and Olson, G.B. (The Minerals, Metals, and Materials Society, Warrendale, PA, 1999) p.455.Google Scholar
16Sanders, P.G.Witney, A.B.Weertman, J.R.Valiev, R.Z. and Siegel, R.W.Mater. Sci. Eng., A 204 (1995) p. 7.CrossRefGoogle Scholar
17Swygenhoven, H. Van, Spaczer, M. and Caro, A.Acta Mater. 47 (1999) p.3117.CrossRefGoogle Scholar
18Hugo, R.C.Kung, H.Weertman, J.R.Mitra, R.Knapp, J.A. and Follstaedt, D.M.Acta Mater. 51 (2003) p.1937.Google Scholar
19Youngdahl, C.J.Weertman, J.R.Hugo, R.C. and Kung, H.H.Scripta Mater. 44 (2001) p.1475.CrossRefGoogle Scholar
20Kumar, K.S.Suresh, S.Chisholm, M.F.Horton, J.A. and Wang, P.Acta Mater. 51 (2003) p.387.CrossRefGoogle Scholar
21Coble, R.L.J. Appl. Phys. 34 (1963) p. 1679.CrossRefGoogle Scholar
22Chokshi, A.H.Rosen, A.Karch, J. and Gleiter, H.Scripta Metall. 23 (1989) p.1679.CrossRefGoogle Scholar
23Nieman, G.W.Weertman, J.R. and Siegel, R.W.Scripta Metall. 23 (1989) p.2013.Google Scholar
24Weertman, J.R. and Sanders, P.G.Solid State Phenom. 35–36 (1994) p.249.Google Scholar
25Volpp, T.Göring, E., Kuschke, W.-M. and Arzt, E.Nanostruct. Mater. 8 (1997) p.855.CrossRefGoogle Scholar
26Hasnaoui, A.Swygenhoven, H. Van, and Derlet, P.M.Acta Mater. 50 (2002) p.3927.CrossRefGoogle Scholar
27Sanders, P.G.Fougere, G.E.Thompson, L.J.Eastman, J.A. and Weertman, J.R.Nanostruct. Mater. 8 (1997) p.243.CrossRefGoogle Scholar
28Sanders, P.G.Eastman, J.A. and Weertman, J.R.Acta Mater. 46 (1998) p.4195.CrossRefGoogle Scholar
29Sanders, P.G.Youngdahl, C.J. and Weertman, J.R.Mater. Sci. Eng., A 234–236 (1997) p.77.Google Scholar
30Sanders, P.G.Eastman, J.A. and Weertman, J.R.Acta Mater. 45 (1997) p.4019.Google Scholar
31Shen, T.D.Koch, C.C.Tsui, T.Y. and Pharr, G.M.J.Mater. Res. 10 (1995) p.2892.Google Scholar
32Agnew, S.R.Elliott, B.R.Youngdahl, C.J.Hemker, K.J. and Weertman, J.R.Mater. Sci. Eng., A 285 (2000) p.391.CrossRefGoogle Scholar
33Weertman, J.R.Farkas, D.Hemker, K.Kung, H.Mayo, M.Mitra, R. and Swygenhoven, H. Van, MRS Bull. 24 (2) (1999) p.44.CrossRefGoogle Scholar
34Warren, B.E. and Averbach, B.L.J. Appl. Phys. 21 (1950) p.595.CrossRefGoogle Scholar
35Mitra, R.Ungàr, T., Morita, T.Sanders, P.G. and Weertman, J.R. in Advanced Materials for the 21st Century, edited by Chung, Y.-W.Dunand, D.C.Liaw, P.K. and Olson, G.B. (The Minerals, Metals and Materials Society, Warrendale, PA, 1999) p.553.Google Scholar
36Sharpe, W.N. and Fowler, R.O.Small Specimen Test Techniques Applied to Nuclear Reactor Vessel Thermal Annealing and Plant Life Extension,” ASTM STP 1204 (1993) p. 386.Google Scholar
37Elliott, B.R. PhD thesis, Northwestern University, 1998.Google Scholar