Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T09:22:27.608Z Has data issue: false hasContentIssue false

Properties of Nanostructured One-Dimensional and Composite Thermoelectric Materials

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Over a decade ago, Dresselhaus predicted that low-dimensional systems would one day serve as a route to enhanced thermoelectric performance.In this article, recent results in the thermoelectric properties of nanowires and nanotubes are discussed. Various synthesis techniques will be presented, including chemical vapor deposition for the growth of thermoelectric nanostructures in templated alumina.Electrical transport measurements of carbon nanostructures, such as resistivity and thermopower, have revealed some very interesting thermoelectric properties.Challenges still remain concerning the measurement of individual nanostructures such as nanowires.Much work has been performed on the thermoelectric properties of carbon nanotubes, and these results will be highlighted.In addition, routes for enhanced thermoelectric materials have focused on incorporating nanostructures within the bulk materials.The role of these “hybrid composite structures” based on nanomaterials incorporated into the bulk matrix and the potential for enhanced performance are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Iijima, S.Nature 354 (1991) p.56.CrossRefGoogle Scholar
2.Dresselhaus, M.Dresselhaus, G. and Avouris, Ph., eds., Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer-Verlag, Berlin, 2001).CrossRefGoogle Scholar
3.Meyyappan, M. ed., Carbon Nanotubes: Science and Applications (CRC Press, Boca Raton, FL, 2005).Google Scholar
4.Collins, P.G.Bradley, K.Ishigami, M. and Zettl, A., Science 287 (2000) p.1801.CrossRefGoogle Scholar
5.Bradley, K.Jhi, S.-H., Collins, P.G.Hone, J.Cohen, M.L.Louie, S.G. and Zettl, A.Phys. Rev. Lett. 85 (20) (2000) p.4361.CrossRefGoogle Scholar
6.Sumanasekera, G.U.Adu, C.K.W.Fang, S. and Eklund, P.C.Phys. Rev. Lett. 85 (5) (2000) p.1096.CrossRefGoogle Scholar
7.Savage, T.Sadanadan, B.Gaillard, J.Tritt, T.M., Sun, Y.-P., Wu, Y.Nayak, S.Car, R.Marzari, N.Ajayan, P.M. and Rao, A.M.J. Cond. Matter. 15 (2003) p. 1915; M., Grujicic, S., Nayak, T., Tritt and A.M., Rao Appl. Surf. Sci. 214 (2003) p.289.Google Scholar
8.McGuire, K.Gothard, N.Gai, P.L.Dresselhaus, M.S., Sumanasekera, G. and Rao, A.M.Carbon 43 (2005) p.219.CrossRefGoogle Scholar
9.Romero, H.E.Bolton, K.Rosen, A. and Eklund, P.C., Science 307 (2005) p.89.CrossRefGoogle Scholar
10.Blatt, F.J.Schroeder, P.A.Foiles, C.L. and Greig, D.Thermoelectric Power of Metals (Plenum Press, New York, 1976).CrossRefGoogle Scholar
11.Avouris, P.Acc. Chem. Res. 35 (2002) p.1026.CrossRefGoogle Scholar
12.Scarola, V.W. and Mahan, G.D.Phys. Rev. B 66 205405 (2002).CrossRefGoogle Scholar
13.Vavro, J.Llaguno, M.C.Fischer, J.E.Ramesh, S.Saini, R.K.Ericson, L.M.Davis, V.A.Hauge, R.H.Pasquali, M. and Smalley, R.E.Phys. Rev. Lett. 90 065503 (2003).CrossRefGoogle Scholar
14.Romero, H.E.Sumanasekera, G.U.Kishore, S. and Eklund, P.C.J.Phys. Condens. Matter 16 (2004) p.1939.CrossRefGoogle Scholar
15.Sumanasekera, G.U.Pradhan, B.K.Romero, H.E.Adu, K.W. and Eklund, P.C.Phys. Rev. Lett. 89 166801 (2002).CrossRefGoogle Scholar
16.Sadanadan, B.Savage, T.Gaillard, J.Bhattacharya, S.Tritt, T.Cassell, A.Pan, Z.Wang, Z.L. and Rao, A.M.J. Nanosci. Nanotech. (Special Issue) 3 (2003) p.99.CrossRefGoogle Scholar
17.Small, J.P.Shi, L. and Kim, P.Phys. Rev. Lett. 91 256801 (2003).CrossRefGoogle Scholar
18.Vavro, J.Llaguno, M.C.Satishkumar, B.C.Luzzi, D.E. and Fischer, J.E.Appl. Phys. Lett. 80 (8) (2002) p.1450.CrossRefGoogle Scholar
19.Grigorian, L.Sumanasekera, G.U.Loper, A.L.Fang, S.L.Allen, J.L. and Eklund, P.C.Phys. Rev. B 60 (1999) p.R11309.CrossRefGoogle Scholar
20.Remskar, M.Mrzel, A.Skraba, Z.Jesih, A.Ceh, M.Demsar, J.Stadelmann, P.Levy, F. and Mihailovic, D.Science 292 (2001) p.479 and references therein.CrossRefGoogle Scholar
21.Chen, J., Li, S.-L.Gao, F. and Tao, Z.-L.Chem. Mater. 15 (2003) p.1012.CrossRefGoogle Scholar
22.Chen, J., Li, S.-L.Tao, Z.-L. and Gao, F. Chem. Commun. (2003) p.980.Google Scholar
23.Hicks, L.D. and Dresselhaus, M.S.Phys. Rev. B 47 (1993) p.12727.CrossRefGoogle Scholar
24.Imai, H.Shimakawa, Y. and Kubo, Y.Phys. Rev. B 64 241104-R (2001) and references therein.CrossRefGoogle Scholar
25.Magri, P.Boulanger, C.Lecuire, J.M.J.Mater. Chem. 6 (1996) p.773.CrossRefGoogle Scholar
26.Fleurial, J.P.Borschevsky, A.Ryan, M.A.Phillips, W.Kolawa, E.Kacisch, T. and Ewell, R. in Proc. 16th ICT (IEEE, Piscataway, NJ, 1997) p.641.Google Scholar
27.Martin-Gonzalez, M., Snyder, G.J.Pri-eto, A.L., Gronsky, R.Sands, T. and Stacy, A.M.Nano Lett. 3 (2003) p.973 and references therein.CrossRefGoogle Scholar
28.Sander, M.S.Prieto, A.L.Gronsky, R.Sands, T. and Stacy, A.M.Adv. Mater. 14 (2002) p.665.3.0.CO;2-B>CrossRefGoogle Scholar
29.Ji, X.H.Zhao, X.B.Zhang, Y.H.Sun, T.Ni, H.L. and Lu, B.H. in Proc. 23rd ICT (IEEE, Piscat-away, NJ, 2004).Google Scholar
30.Zhao, X.B.Ji, X.H.Zhang, Y.H.Zhu, T.J.Tu, J.P. and Zhang, X.B.Appl. Phys. Lett. 86 062111 (2005).CrossRefGoogle Scholar
31.Ji, X.H.Zhao, X.B.Zhang, Y.H.Lu, B.H. and Ni, H.L.J. Alloys Compd. 387 (2005) p.282.CrossRefGoogle Scholar
32.Ji, X.H. “Syntheses and Properties of Nanostructured Bi2Te3-Based Thermoelectric Materials,” PhD dissertation, Zhejiang University, Hangzhou, China (2005).Google Scholar
33.Zhao, X.B.Ji, X.H.Zhang, Y.H. and Lu, B.H.J.Alloys Compd. 368 (1-2) (2004) p.349.CrossRefGoogle Scholar
34.Ji, X.H.Zhao, X.Zhang, Y.Lu, B.H. and Ni, H. in Thermoelectric Materials 2003—Research and Applications, edited by Nolas, G.S.Yang, J.Hogan, T.P. and Johnson, D.C. (Mater. Res. Soc. Symp. Proc. 793, Warrendale, PA, 2004) p.21.Google Scholar
35.Zhao, X.B, Sun, T.Zhu, T.J. and Tu, J.P.J.Mater. Chem. 15 (2005) p.1621.CrossRefGoogle Scholar
36.Zheng, Y.Y.Zhu, T.J.Zhao, X.B.Tu, J.P. and Cao, G.S.Mater. Lett. 59 (2005) p.2886.CrossRefGoogle Scholar
37.Ji, X.H.Zhao, X.B.Zhang, Y.H.Lu, B.H. and Ni, H.L.J. Alloys Compd. 387 (2005) p. 282; X.H., Ji, X.B., Zhao, Y.H., Zhang, B.H., Lu and H.L., Ni Mater. Lett. 59 (2005) p. 682; X.B., Zhao, Y.H., Zhang and X.H., Ji Inorg. Chem. Commun. 7 (2004) p.386.CrossRefGoogle Scholar
38.Zhao, X.B.Ji, X.H.Zhang, Y.H.Cao, G.S. and Tu, J.P.Appl. Phys. A 80 (2005) p.1567.CrossRefGoogle Scholar
39.Sashchiuk, A.Amirav, L.Bashouti, M.Krueger, M.Sivan, U. and Lifshitz, E.Nano Lett. 4 (2004) p.159.CrossRefGoogle Scholar
40.Xie, J.Zhao, X.-B.Mi, J.-L.Cao, G.-S. and Tu, J.-P.J. Zhejiang Univ., Sci. (JZUS), Lett. 5 (2005) p.1504.CrossRefGoogle Scholar
41.Xie, J.Zhao, X.B.Cao, G.S.Zhao, M.J. and Su, S.F.J.Power Sources 140 (2005) p.350.CrossRefGoogle Scholar
42.Zhang, B.He, J. and Tritt, T.M.Appl. Phys. Lett. 88 043119 (2006).CrossRefGoogle Scholar
43.Tritt, T.M.Science 283 (1999) p.804.CrossRefGoogle Scholar