Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T02:47:26.300Z Has data issue: false hasContentIssue false

Progress Toward Crystalline-Silicon-Based Light-Emitting Diodes

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The semiconductor silicon is the dominant material in microelectronics and is one of the best-studied materials known to humanity. Its inability to emit light efficiently is therefore well documented. Nevertheless, a “holy grail” of semiconductor materials research has for decades been the realization of an efficient Si light-emitting diode (LED). Such a device would enable optoelectronic circuitry to be based entirely on silicon and would revolutionize VLSI technology since the other required Si-based devices (detectors, waveguides, modulators, etc.) have already been demonstrated. Although this holy grail has proved elusive, the 1990s have heralded greatly renewed interest and optimism in the development of such devices for both the visible and near-infrared spectral ranges. Dramatic progress is at last being made. This review focuses, in a somewhat chronological manner, on the progress of specific approaches to realizing crystalline structures of high radiative efficiency, and the materials constraints involved.

Type
Technical Features
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Pankove, J.I., Optical Processes in Semiconductors, 2nd edition (Dover Publ. Inc., New York, 1974).Google Scholar
2.Haynes, J.R. and Briggs, H.B., Phys. Rev. 86 (1952) p. 647.Google Scholar
3.Haynes, J.R. and Westphal, W.C., Phys. Rev. 101 (1956) p. 1676.CrossRefGoogle Scholar
4.Michaels, W. and Pilkuhn, M.H., Phys. Status Solidi 36 (1969) p. 311.CrossRefGoogle Scholar
5.Yablonovitch, E. and Gmitter, T., Appl. Phys. Lett. 49 (1986) p. 587.CrossRefGoogle Scholar
6.Newman, R., Phys. Rev. 100 (1955) p. 700.CrossRefGoogle Scholar
7.Schewchun, J. and Wei, L.Y., Solid-State Electron. 8 (1965) p. 485.CrossRefGoogle Scholar
8.Kosyachenko, L.A., Kukhto, E.F., and Sklyarchuk, V.M., Sov. Phys. Semicond. 18 (1984) p. 266.Google Scholar
9.Lacaita, A.L., Zappa, F., Bigliardi, S., and Manfredi, M., IEEE Trans. Electron Devices 40 (1993) p. 577.CrossRefGoogle Scholar
10.Wolford, D.J., Scott, B.A., Reimer, J.A., and Bradley, J.A., Sixteenth Int. Conf. Phys. Semics, Montpellier, France 1983, Physica B 117 & 118 (1983) p. 920.Google Scholar
11.Harrah, L.A. and Zeigler, J.M., Macromolecules 20 (1987) p. 601.CrossRefGoogle Scholar
12.Furukawa, K., Fujimo, M., and Matsumoto, N., Macromolecules 23 (1990) p. 3423.CrossRefGoogle Scholar
13.Mitchcard, G.S., Lyon, S.A., Elliott, K.R., and McGill, T.C., Solid State Commun. 29 (1979) p. 425.CrossRefGoogle Scholar
14.Weber, J., Schmid, W., and Sauer, R., Phys. Rev. B 21 (1980) p. 2401.CrossRefGoogle Scholar
15.Canham, L.T., Barraclough, K.G., and Robbins, D.J., Appl. Phys. Lett. 51 (1987) p. 1509.CrossRefGoogle Scholar
16.Bradfield, P.L., Brown, T.G., and Hall, D.G., Appl. Phys. Lett. 51 (1989) p. 100.CrossRefGoogle Scholar
17.Gillessen, K. and Schairer, W., in Light Emitting Diodes: An Introduction (Prentice Hall Int. Series in Optoelectronics, England, 1987).Google Scholar
18.Davies, G., Phys. Reports 176 (1989) p. 83.CrossRefGoogle Scholar
19.Reisfield, R. and Jorgensen, C.K., in Lasers and Excited States of Rare Earths (Springer Verlag, Berlin, 1977).CrossRefGoogle Scholar
20.Ennen, H., Schneider, J., Pomrenke, G., and Axmann, A., Appl. Phys. Lett. 43 (1983) p. 943.CrossRefGoogle Scholar
21.Ennen, H., Pomrenke, G., Axmann, A., Eisele, K., Hadyl, W., and Schneider, J., Appl. Phys. Lett. 46 (1985) p. 381.CrossRefGoogle Scholar
22.Favennac, P.N., Haridon, H.L., Moutonnet, D., Salvi, M., and Gauneau, M., Jpn. J. Appl. Phys. 29 (1990) p. L524.CrossRefGoogle Scholar
23.Michel, J., Benton, J.L., Ferrante, R.F., Jacobson, D.C., Eaglesham, D.J., Fitzgerald, E.A., Xie, Y.H., Poate, J.M., and Kimerling, L.C., J. Appl. Phys. 70 (1991) p. 2672.CrossRefGoogle Scholar
24.Adler, D.L., Jacobson, D.C., Eaglesham, D.J., Marcus, M.A., Benton, J.L., Poate, J.M., and Citrin, P.H., Appl. Phys. Lett. 61 (1992) p. 2181.CrossRefGoogle Scholar
25.Petrov, V.V., Prosolovitch, V.S., Tkachev, V.D., Tsyrulkevitch, C.S., and Karpov, Y. A., Sov. Phys. Semicond. 19 (1985) p. 474.Google Scholar
26.Dietrich, H.B., Klein, P.B., Mrstik, B.J., and Ingram, D.C., SPIE Proc., Vol. 530 (1985) p. 195.CrossRefGoogle Scholar
27.Nazyrov, D. E., Kulikov, G.S., and Malkovich, R.Sh., Sov. Phys. Semicond. 25 (1991) p. 997.Google Scholar
28.Gillin, W.P., Jingping, Z., and Sealy, B.J., Solid State Commun. 77 (1991) p. 907.CrossRefGoogle Scholar
29.Eaglesham, D.J., Michel, J., Fitzgerald, E.A., Jacobson, D.C., Poate, J.M., Benton, J.L., Polman, A., Xie, Y.H., and Kimerling, L.C., Appl. Phys. Lett. 58 (1991) p. 2797.CrossRefGoogle Scholar
30.Polman, A., Custer, J.S., Snoeks, E., and Van den Hoven, G.N., Appl. Phys. Lett. 62 (1993) p. 507.CrossRefGoogle Scholar
31.Xie, Y.H., Fitzgerald, E.A., and Mii, Y.J., J. Appl. Phys. 70 (1991) p. 3223.CrossRefGoogle Scholar
32.Gnutzmann, U. and Clausecker, K., Appl. Phys. 3 (1974) p. 9.CrossRefGoogle Scholar
33.Zachai, R., Eberl, K., Abstreiter, G., Kasper, E., and Kibbel, H., Phys. Rev. Lett. 64 (1990) p. 1055.CrossRefGoogle Scholar
34.Schmid, U., Christensen, N.E., and Cardona, M., Phys. Rev. Lett. 65 (1990) p. 2610.CrossRefGoogle Scholar
35.Noel, J.P., Rowell, N.L., Houghton, D.C., and Perovic, D.D., Appl. Phys. Lett. 57 (1990) p. 1037.CrossRefGoogle Scholar
36.Noel, J.P., Rowell, N.L., Houghton, D.C., Wong, A., and Perovic, D.D., Appl. Phys. Lett. 61 (1992) p. 690.CrossRefGoogle Scholar
37.Terashima, K., Tajima, M., and Tatsumi, T., Appl. Phys. Lett. 57 (1990) p. 1925.CrossRefGoogle Scholar
38.Sturm, J.C., Manoham, H., Lenchyshyn, L.C., Thewalt, M.L.W., Rowell, N.L., Noel, J.P., and Houghton, D.C., Phys. Rev. Lett. 66 (1991) p. 1362.CrossRefGoogle Scholar
39.Robbins, D.J., Canham, L.T., Barnett, S.J., Pitt, A.D., and Calcott, P.D.J., J. Appl. Phys. 71 (1992) p. 1407.CrossRefGoogle Scholar
40.Robbins, D.J., Calcott, P.D.J., and Leong, W.Y., Appl. Phys. Lett. 59 (1991) p. 1350.CrossRefGoogle Scholar
41.Mi, Q., Xiao, X., Sturm, J.C., Lenchyshyn, L.C., and Thewalt, M.L.W., Appl. Phys. Lett. 60 (1992) p. 3177.CrossRefGoogle Scholar
42.Canham, L.T., Appl. Phys. Lett. 57 (1990) p. 1046.CrossRefGoogle Scholar
43.Uhlir, A., Bell System Tech. J. 35 (1956) p. 333.CrossRefGoogle Scholar
44.Theunissen, M.J.J., J. Electrochem. Soc. 119 (1972) p. 351.CrossRefGoogle Scholar
45.Lehmann, V. and Gosele, U., Appl. Phys. Lett. 58 (1991) p. 856.CrossRefGoogle Scholar
46.Corcoran, E., Sci. American (July 1991) p. 108.Google Scholar
47.Calcott, P.D.J., Nash, K.J., Canham, L.T., Kane, M.J., and Brumhead, D., in Microcrystalline Semiconductors—Materials Science & Devices, edited by Fauchet, P.M., Tsai, C.C., Canham, L.T., Shimizu, I., and Aoyagi, Y (Mater. Res. Soc. Symp. Proc. 283, Pittsburgh, PA, 1993) p. 143.Google Scholar
48.Cullis, A.G. and Canham, L.T., Nature 353 (1991) p. 335.CrossRefGoogle Scholar
49.Read, A.J., Needs, R.J., Nash, K.J., Canham, L.T., Calcott, P.D.J., and Qteish, A., Phys. Rev. Lett. 69 (1992) p. 1232; 70 (1993) p. 2050.CrossRefGoogle Scholar
50.Canham, L.T., Cox, T.I., and Leong, W.Y., U.K. Patent Application No. 9108176, April 17, 1991.Google Scholar
51.Bressers, P.M.M.C., Knapen, J.W.J., Meulenkamp, E.A., and Kelly, J.J., Appl. Phys. Lett. 61 (1992) p. 108.CrossRefGoogle Scholar
52.Canham, L.T., Leong, W.Y., Beale, M.I.J., Cox, T.I., and Taylor, L.L., Appl. Phys. Lett. 61 (1992) p. 2563.CrossRefGoogle Scholar
53.Koshida, N. and Koyama, H., Appl. Phys. Lett. 60 (1992) p. 347.CrossRefGoogle Scholar
54.Richter, A., Steiner, P., Kozlowski, F., and Lang, W., IEEE, EDL 12 (1991) p. 691.Google Scholar
55.Namavar, F., Maruska, H.P., and Kalkhoran, N.M., Appl. Phys. Lett. 60 (1992) p. 2514.CrossRefGoogle Scholar
56.Bassous, E., Freeman, M., Halbout, J.M., Iyer, S.S., Kesan, V.P., Munguia, P., Pesarcik, S.F., and Williams, B.L., in Light Emission from Silicon, edited by Iyer, S.S., Collins, R.T., and Canham, L.T. (Mater. Res. Soc. Symp. Proc. 256, Pittsburgh, PA, 1992), p. 23.Google Scholar
57.Futagi, T., Matsomoto, T., Katsuno, M., Ohta, Y., Mimura, M., and Kitamura, K., Jpn. J. Appl. Phys. 31 (1992) p. L616.CrossRefGoogle Scholar
58.Shi, H., Zheng, Y., Wong, Y., and Yuan, R., Chin. Phys. Lett. 9 (1992) p. 555.Google Scholar
59.Chen, Z., Borman, G., and Ochoa, R., Appl. Phys. Lett. 62 (1993) p. 708.CrossRefGoogle Scholar
60.Tischler, M.A., Collins, R.T., Stathis, J.H., and Tsang, J.C., Appl. Phys. Lett. 60 (1992) p. 639.CrossRefGoogle Scholar
61.Petrova-Koch, V, Muschik, T., Kux, A., Meyer, B.K., Koch, F., and Lehman, V., Appl. Phys. Lett. 61 (1992) p. 943.CrossRefGoogle Scholar