Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T16:23:39.476Z Has data issue: false hasContentIssue false

Polymer Nanocomposites

Published online by Cambridge University Press:  31 January 2011

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Polymer nanocomposites (PNCs)–that is, nanopar ticles (spheres, rods, plates) dispersed in a polymer matrix–have garnered substantial academic and industrial in terest since their inception, circa 1990. This is due in large part to the incredible promise demonstrated by these early efforts: PNCs will not only expand the per form ance space of traditional filled polymers, but introduce completely new combinations of properties and thus enable new applications for plastics. Low volume additions (1–5%) of nanopar -ticles, such as layered silicates or carbon nanotubes, provide property enhancements with respect to the neat resin that are comparable to those achieved by conventional loadings (15–40%) of traditional fillers. The lower loadings facilitate proc essing and re duce component weight. Most important, though, is the unique value - added properties not normally possible with traditional fillers, such as reduced permeability, optical clarity, self - passivation, and increased re sis tance to oxidation and ablation. These characteristics have been transformed into numerous commercial suc cesses, including automotive parts, coatings, and flame retardants. This issue of the MRS Bulletin provides a snapshot of these exemplary successes, future opportunities, and the critical scientific challenges still to be addressed for these nanoscale multiphase systems. In addition, these ar ticles provide a perspective on the current status and future directions of polymer nanocomposite science and technology and their potential to move beyond additive concepts to designed ma te rials and devices with prescribed nanoscale composition and morphology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

References

1.Fukushima, Y., Inagaki, S., J. Inclusion Phenom. 5 473 (1987).CrossRefGoogle Scholar
2.Fukushima, Y., Okada, A., Kawasumi, M., Kurauchi, T., Kamigaito, O., Clays Clay Miner. 23, 27 (1988).Google Scholar
3.Usuki, A. et al., J. Mater. Res. 8 1174 (1993).CrossRefGoogle Scholar
4.Kojima, Y. et al., J. Mater. Res. 8, 1185 (1993).CrossRefGoogle Scholar
5.Vaia, R.A., Ishii, H., Giannelis, E.P., Chem. Mater. 5, 1694 (1993).CrossRefGoogle Scholar
6.Lan, T.P., Pinnavaia, T.J., Chem. Mater. 6, 2216 (1994).CrossRefGoogle Scholar
7.McWilliams, A., “Nanocomposites, Nanoparticles, Nanoclays, Nanotubes” (NANO21C, BCC Research, Norwalk, CT, 2006).Google Scholar
8.Polymer Nanocomposites Create Exciting Opportunities in the Plastics Industry” (Principia Partners, Jersey City, NJ, 2005).Google Scholar
9.Thayer, A.M., Chem. Eng. News 78 36 (October 16, 2000).Google Scholar
10.Vaia, R.A., Giannelis, E.P., MRS Bull. 26, 394 (2001).CrossRefGoogle Scholar
11.Vaia, R.A., Wagner, H.D., Mater. Today 7, 32 (November 2004).CrossRefGoogle Scholar
12.Bansal, A., Yang, H., Li, C., Cho, K., Benicewicz, B.C., Kumar, S.K., Schadler, L.S.,Nature Materials 4 693 (2005).CrossRefGoogle Scholar
13.Krishnamoorti, R., Vaia, R.A., Giannelis, E.P., Chem. Mater. 9, 1728 (1996).Google Scholar
14.Starr, F.W., Schroeder, T.B., Glotzer, S.C., Macromolecules 35 4481 (2002).Google Scholar
15. SciFinder, Chemical Abstract Service (CAS) of the American Chemical Society, CAPLUS and MEDLINE databases, October 8, 2006. Data resulted from a keyword search on “nanocomposite” and selecting citations that included this concept (25,435 total citations). Results were refined using “polymer” (10,350 total citations), “nanotube or nanorod” (864 total citations), or “clay or (layered silicate) or montmorillonite” (3,938 total citations). Other keyword combinations did not drastically modify the refined number of citations (_2–3%).Google Scholar
16.Giannelis, E.P., Adv. Mater. 8, 29 (1996).CrossRefGoogle Scholar
17.Alexandre, M., Dubois, P., Mater. Sci. Eng., R 28, 1 (2000).CrossRefGoogle Scholar
18.Ray, S.S., Okamoto, M., Prog. Polym. Sci. 2, 1539 (2003).Google Scholar
19.Okamoto, M., “Polymer/Clay Nanocomposites,” in Encyclopedia of Nanoscience and Nanotechnology, Nalwa, H.S., Ed. (American Scientific, Stevenson Ranch, CA, 2004), vol. 8, p. 1.Google Scholar
20.Thostenson, E.T., Li, C., Chou, T.-W., Compos. Sci. Technol. 65, 491 (2005).CrossRefGoogle Scholar
21.Drummy, L.F., Koerner, H., Farmer, B.L., Vaia, R.A., Advanced Morphology Characterization of Clay-Based Polymer Nanocomposites: CMS Workshop Lecture Series (Clay Minerals Society, Chantilly, VA, 2006) vol. 14.Google Scholar
22.Tjong, S.C., Mater. Sci. Eng., R 53, 73 (2006).CrossRefGoogle Scholar
23.Hussain, F., Hojjati, M., Okamoto, M., Gorga, R.E., J. Compos. Mater. 40 1511 (2006).CrossRefGoogle Scholar
24.Xie, X.-L., Maia, Y.-W., Zhou, X.-P., Mater. Sci. Eng., R 49, 89 (2005).CrossRefGoogle Scholar
25.Moniruzzaman, M., Winey, K.I., Macromolecules (Review) 39, 5194 (2006).CrossRefGoogle Scholar
26.Pinnavaia, T.J., Beall, G.W., Polymer-Clay Nanocomposites (Wiley, New York, 2001).Google Scholar
27.Krishnamoorti, R., Vaia, R.A., Eds., Polymer Nanocomposites: Synthesis, Characterization, Modeling (ACS Symposium Series, American Chemical Society, Washington, DC, 2001).CrossRefGoogle Scholar
28.Ray, S.S., Bousmina, M., Polymer Nanocomposites and Their Applications (American Scientific, Stevenson Ranch, CA, 2006).Google Scholar
29.Mai, Y.-W., Yu, Z.-Z., Eds., Polymer Nanocomposites CRC (Woodhead Publishing, Cambridge, UK, 2006).Google Scholar
30.Morgan, A.B. and Wilkie, C.A., Eds., Flame Retardant Polymer Nanocomposites (Wiley, New York, 2007).Google Scholar
31. “Environmental, Health and Safety Needs for Engineered Nanoscale Materials” (Committee on Technology, National Science and Technology Council, Washington, DC, 2006; www.nano.gov).Google Scholar
32.Donnet, J.-B., Bansal, R.C., Wang, M.-J., Carbon Black (Marcel Dekker, New York, ed. 2, 1993); J.C. Grunlan, W.W. Gerberich, L.F. Francis, Polym. Eng. Sci. 41, 1947 (2001).Google Scholar
33.Donnet, J.-B., Wang, T.K., Rebouillat, S., Peng, J.C.M., Carbon Fibers (Marcel Dekker, New York, ed. 3, 1998; www.apsci.com/home.html).CrossRefGoogle Scholar
34.Yasmin, A., Daniel, I.M., Polymer 45, 8211 (2004); D.D.L. Chung, J. Mater. Sci. 37, 1475 (2002); J.M. Keith, C.D. Hingst, M.G. Miller, J.A. King, R.A. Hauser, Polym. Compos. 27, 1 (2006).CrossRefGoogle Scholar
35.Vlasveld, D.P.N., Parlevliet, P.P., Bersee, H.E.N., Picken, S.J., Composites Part A 36, 1 (2005); A. Pegormti, L. Fambfu, C. Migliaresi, Polym. Compos. 21, 466 (2000).CrossRefGoogle Scholar
36.Yang, K. et al., Polym. Comp. 27, 443 (2006); M. Lei et al., J. Cryst. Growth 294, 358 (2006); T. Ding, E.S. Daniels, M.S. El-Aasser, A. Klein, J. Appl. Polym. Sci. 100, 4550 (2006); E. Ramachandran, P. Raji, K. Ramachandran, S. Natarajan, Cryst. Res. Technol. 41, 64 (2006).CrossRefGoogle Scholar
37.Clauser, C., Huenges, E., in Rock Physics and Phase Relations: A Handbook of Physical Constants (American Geophysical Union, Washington, DC, 1995) p. 105.Google Scholar
38.Brabec, L. et al., Microporous Mesoporous Mater. 94, 226 (2006); I. Hackman, L. Hollaway, Composites Part A 37, 1161 (2006).CrossRefGoogle Scholar
39.Svehlova, V., Poloucek, E., Angew. Makromol. Chem. 214, 91 (1994); E. Bailey, J.R. Holloway, Earth. Planet. Sci. Lett. 183, 487 (2000); A. Kirak, H. Yilmaz, S. Guler, C. Guler, J. Phys. D: Appl. Phys. 32, 1919 (1999).CrossRefGoogle Scholar
40. Applied Sciences Inc. Home Page, http://www.apsci.com/home.html; Ng, H.Y., Lu, X., Lau, S.K., Polym. Compos. 26, 66 (2005); C. Yu et al., Trans. ASME 128, 234 (2006); J. Zeng et al., Composites Part B 35, 245 (2004); T. Morita, H. Inoue, Y. Suhara, U.S. Patent 6,565,971 (May 20, 2003).CrossRefGoogle Scholar
41.Zeng, J. et al., Composites Part B 35, 245 (2004); NanoLab Home Page, www.nano-lab.com/nanotubes-research-grade.html; M.-K. Yeh, N.-H. Tai, J.-H. Liu, Carbon 44, 1 (2006); M. Fujii et al., Phys. Rev. Lett. 95, 065502 (2005); T.W. Ebbesen et al., Nature 382, 54 (1996).CrossRefGoogle Scholar
42.Bichoutskaia, E., Heggie, M.I., Popov, A.M., Lozovik, Y.E., Phys. Rev. B 73, 045435 (2006); S. Berber, Y.-K. Kwon, D. Tománek, Phys. Rev. Lett. 84, 4613 (2000); U. Dettlaff-Weglikowska et al., J. Am. Chem. Soc. 127, 5125 (2005).CrossRefGoogle Scholar
43.Jeona, H.S., Rameshwarama, J.K., Kimb, G., Weinkauf, D.H., Polymer 44, 5749 (2003); Y.-P. Wu, Q.-X. Jia, D.-S. Yu, L.-Q. Zhang, Polym. Test. 23, 903 (2004); V.V. Murashov, J. Phys.: Condens. Matter. 11, 1261 (1999); T.J. Pinnavaia, G.W. Beall, Polymer-Clay Nanocomposites, Wiley Series in Polymer Science (Wiley, New York, 2001).CrossRefGoogle Scholar
44.Amarchand, S., Rama Mohan, T.R., Ramakrishnan, P., Adv. Powder Technol. 11, 415 (2000); R.J. Fleming et al., IEEE Trans. Dielectrics and Electrical Insulation 12, 745 (2005); The A to Z of Materials Home Page, www.azom.com/details.asp?ArticleID1179.CrossRefGoogle Scholar
45. High Precision Machining of Hard Materials, Insaco Inc. Home Page, www.insaco.com/home.asp.Google Scholar