Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T08:35:37.777Z Has data issue: false hasContentIssue false

Polymer Electroluminescent Devices

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Electroluminescence (EL) is the emission of light generated from the radiative recombination of electrons and holes electrically injected into a luminescent semiconductor. Conventional EL devices are made of inorganic direct-bandgap semiconductors, such as GaAs and InGaAs. Recently EL devices based on conjugated organic small molecules and polymers have attracted increasing attention due to easy fabrication of large areas, unlimited choice of colors, and mechanical flexibility. Potential applications of these organic/polymeric EL devices include backlights for displays, alphanumeric displays, and high-density information displays.

Electroluminescence from an organic material was first demonstrated in the 1960s on anthracene crystals by Pope et al. at New York University. Subsequently several other groups also observed this phenomenon in organic crystals and thin films. These organic EL devices had high operating voltages and low quantum efficiency. Consequently they did not attract much attention. In 1987 a breakthrough was made by Tang and VanSlyke at Eastman Kodak who found that by using multilayers of sublimated organic molecules, the operating voltage of the organic EL devices was dramatically reduced and the quantum efficiency was significantly enhanced. This discovery touched off a flurry of research activity, especially in Japan. The Japanese researchers, as welt as the group at Kodak, have since improved the device efficiency and lifetime to meet commercial requirements. This progress is reviewed by Tsutsui in this issue.

Type
Polymeric and Organic Electronic Materials and Applications
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Sze, S.M., Physics of Semiconductor Devices (John Wiley & Sons, New York, 1981).Google Scholar
2.Pope, M., Kallmann, H.P., and Magnante, P., J. Chem. Phys. 38 (1963) p. 2042.CrossRefGoogle Scholar
3.Helfrich, W. and Schneider, W.G., Phys. Rev. Lett. 14 (1965) p. 229.CrossRefGoogle Scholar
4.Tang, C.W. and VanSlyke, S.A., Appl. Phys. Lett. 51 (1987) p. 913.CrossRefGoogle Scholar
5.Tang, C.W., VanSlyke, S.A., and Chen, C.H., J. Appl. Phys. 63 (1987) p. 3610.Google Scholar
6.Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burn, P.L., and Holmes, A.B., Nature 347 (1990) p. 539.CrossRefGoogle Scholar
7.Braun, D. and Heeger, A.J., Appl. Phys. Lett. 58 (1991) p. 1982.CrossRefGoogle Scholar
8.Gustafsson, G., Cao, Y., Treacy, G.M., Klavetter, F., Colaneri, N., and Heeger, A.J., Nature 357 (1992) p. 477.CrossRefGoogle Scholar
9.Kido, J., Kimura, M., and Nagai, K., Science 267 (1995) p. 1332.CrossRefGoogle Scholar
10.Leising, G., Tasch, S., Meghdadi, F., Athouel, L., Froyer, G., and Sherf, U., Synth. Met. 81 (1996) p. 185; Grem, G., Leditzky, G., Ullrich, B., and Leising, G., Adv. Mater. 4 (1992) p. 36.CrossRefGoogle Scholar
11.Uchida, M., Ohmori, Y., Morishima, C., and Yoshino, K., Synth. Met. 57 (1992) p. 4168.CrossRefGoogle Scholar
12.Sokolik, I., Zhou, Y., Karasz, F.E., and Morton, D.C., J. Appl. Phys. 74 (1993) p. 3584.CrossRefGoogle Scholar
13.Epstein, A.J., Blatchford, J.W., Wang, Y.Z., Jessen, S.W., Gebler, D.D., Lin, L.B., Gustafson, T.L., Wang, H.L., Park, Y.W., Swager, T.M., and MacDiarmid, A.G., Synth. Met. 78(1996) p. 253.CrossRefGoogle Scholar
14.Wang, Y.Z., Gebler, D.D., Lin, L.B., Blatchford, J.W., Jessen, S.W., Wang, H.L., and Epstein, A.J., Appl. Phys. Lett. 68 (1996) p. 894.CrossRefGoogle Scholar
15.Burn, P.L., Holmes, A.B., Friend, R.H., and Gymer, R.W., Nature 356 (1992) p. 47.CrossRefGoogle Scholar
16.Yang, Z., Karasz, F., and Geise, H.J., Polym. 35 (1994) p. 391.CrossRefGoogle Scholar
17.Dyreklev, P., Beggren, M., Inganäs, O., Andersson, M.R., Wennerstroem, O., and Hjertberg, T., Adv. Mater. 7 (1995) p. 43.CrossRefGoogle Scholar
18.Fou, A.C., Onitsuka, O., Ferreira, M., Rubner, M.F., and Hsieh, B.R., J. Appl. Phys. 79 (1995) p. 1316; Onitsuka, O., Fou, A.C., Ferreira, M., Hsieh, B.R., and Rubner, M.F., Adv. Mater. 80 (1996) p. 4067.Google Scholar
19.Yan, M., Rothberg, L.J., Papadimitrakopoulos, F., and Galvin, M.E., Phys. Rev. Lett. 73 (1994) p. 744.CrossRefGoogle Scholar
20.Friend, R.H. and Greenham, N.C., in Physical Properties of Polymers Handbook, edited by Mark, J.E. (AIP Press, New York, 1996).Google Scholar
21.Pei, Q., Yu, G., Zhang, C., Yang, Y., and Heeger, A.J., Science 269 (1995) p. 1086.CrossRefGoogle Scholar
22.Skotheim, T.A., ed., Handbook of Conducting Polymers, (Marcel Dekker, Inc., New York, 1986); Salaneck, W.R. , I. Lundström, and B. Rånby, in Proc. 81st Nobel Symp. Chem.: Conjugated Polym. Related Mater.; Interconnection Chem. Electron. Structure (Oxford University Press, Oxford, 1993); Blatchford, J.W. and Epstein, A.J., Am. J. Phys. 64 (1996) p. 120.Google Scholar
23.Yu, G., Pakbaz, K., and Heeger, A.J., J. Electron. Mater. 23 (1994) p. 925.CrossRefGoogle Scholar
24.Halls, J.J.M., Walsh, C.A., Greenham, N.C., Marseglia, E.A., Friend, R.H., Moratti, S.C., and Holmes, A.B., Nature 376 (1995) p. 498; Yu, G. and Heeger, A.J., J. Appl. Phys. 78 (1995) p. 4510.CrossRefGoogle Scholar
25.Burroughes, J.H., Jonnes, C.A., and Friend, R.H.; Nature 335 (1988) p. 137; Assadi, A., Svensson, C., Wilander, M., and Inganas, O., Appl. Phys. Lett. 53 (1988) p. 195.CrossRefGoogle Scholar
26.Pei, Q. and Yang, Y., J. Am. Chem. Soc. 118 (1996) p. 7416.CrossRefGoogle Scholar
27.Yu, G., Zhang, C., and Heeger, A.J., Appl. Phys. Lett. 64 (1994) p. 1540.CrossRefGoogle Scholar
28.Parker, I.D., J. Appl. Phys. 75 (1994) p. 1656.CrossRefGoogle Scholar
29.Greenham, N.C. and Friend, R.H., Semiconductor Device Physics of Conjugated Polymers (Academic Press, Inc., San Diego) in press.CrossRefGoogle Scholar
30.Blom, P.W., de Jong, M.J.M., and Vleggaar, J.J.M., Appl. Phys. Lett. 68 (1996) p. 3308.CrossRefGoogle Scholar
31.Brédas, J.L. and Salaneck, W.R., in Organic Electroluminescence, edited by Bradley, D.D.C. and Tsutsui, T. (Cambridge University Press, New York, 1997); Salaneck, W.R., and Brédas, J.L., Adv. Mater. 8 (1996) p. 48; Gao, Y., Park, K.T., and Hsieh, B.R., J. Appl. Phys. 73 (1993) p. 7894. Konstadinidis, K., Papadimitrakopoulos, F., Galvin, M., and Opila, R.L., J. Appl. Phys. 77 (1995) p. 5642.Google Scholar
32.Yang, Y. and Heeger, A.J., Appl. Phys. Lett. 60 (1994) p. 1245.CrossRefGoogle Scholar
33.Roitman, D.B., Sheats, J., and Yang, Y., in Proc. 49th Ann. Conf. Soc. Imaging Sci. Technol. (Minneapolis, May 19–24, 1996) p. 681.Google Scholar
34.Cumpston, B.H. and Jensen, K.F., Synth. Met. 73 (1995) p. 195.CrossRefGoogle Scholar
35.Scott, J.C., Carter, S.A., Karg, S., and Angelopoulos, M., Synth. Met. 80 (1996) p. 111; Carter, S.A., Angelopoulos, M., Karg, S., and Scott, J.C., Appl. Phys. Lett. in press.Google Scholar
36.Yang, Y. and Pei, Q., J. Appl. Phys. 77 (1995) p. 4807; Riess, W., Buchwald, E., Meier, M., Karg, S., Schwoerer, M., Poesch, P., Schmidt, H.W., and Strohriegh, P., Adv. Mater. 7 (1995) p. 839; Strukelj, M., Miller, T.M., Papadimitrakopoulos, F., and Son, S., J. Am. Chem. Soc. 117 (1995) p. 11976.CrossRefGoogle Scholar
37.Greenham, N.C., Moratti, S.C., Bradley, D.D.C., Friend, R.H., and Holmes, A.B., Nature 365 (1993) p. 628.CrossRefGoogle Scholar
38.Andersson, M.R., Yu, G., and Heeger, A.J., presented at the International Conference of Synthetical Metals (Salt Lake City, 1996).Google Scholar
39.Berggren, M., Inganäs, O., Gustafsson, G., Rasmusson, J., Andersson, M.R., Hjertberg, T., and Wennerstrom, O., Nature 372 (1994) p. 444.CrossRefGoogle Scholar
40.Yokoyama, H., Science 256 (1992) p. 66; Dodabalapur, A., Rothberg, LJ., Miller, T.M., and Kwock, E.W., Appl. Phys. Lett. 64 (1994) p. 2486; Cimrova, V. and Neher, D., J. Appl. Phys. 79 (1996) p. 3299.CrossRefGoogle Scholar
41.Dodabalapur, A., Rothberg, L.J., and Miller, T.M., Appl. Phys. Lett. 65 (1995) p. 2308.CrossRefGoogle Scholar
42.Yu, G., Zhang, C., Cao, Y., Pei, Q., and Yang, Y., Heeger, A.J., presented at Materials Research Society Spring Meeting, San Francisco, 1996.Google Scholar
43.Friend, R., presented at Materials Research Society Fall Meeting, Boston, 1996.Google Scholar
44.Yang, Y., Pei, Q., and Heeger, A.J., J. Appl. Phys. 79 (1996) p. 934.CrossRefGoogle Scholar
45.Pei, Q., Yang, Y., Yu, G., Zhang, C., and Heeger, A.J., J. Am. Chem. Soc. 118 (1996) p. 3922.CrossRefGoogle Scholar
46.Cao, Y., Yu, G., Heeger, A.J., and Yang, C.Y., Appl. Phys. Lett. 68 (1996) p. 3218.CrossRefGoogle Scholar
47.Pei, Q. and Yang, Y., J. Am. Chem. Soc. 81 (1997) p. 3294.Google Scholar
48.Yang, Y. and Pei, Q., J. Appl. Phys. in press.Google Scholar