Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T09:58:19.563Z Has data issue: false hasContentIssue false

Polymer and composite electrolytes

Published online by Cambridge University Press:  10 October 2018

Daniel T. Hallinan Jr.
Affiliation:
Florida A&M University–Florida State University, USA; [email protected]
Irune Villaluenga
Affiliation:
Blue Current, USA; [email protected]
Nitash P. Balsara
Affiliation:
University of California, Berkeley, USA; [email protected]
Get access

Abstract

Solid inorganic and polymeric electrolytes have the potential to enable rechargeable batteries with higher energy densities, compared to current lithium-ion technology, which uses liquid electrolyte. Inorganic materials such as ceramics and glasses conduct lithium ions well, but they are brittle, which makes incorporation into a battery difficult. Polymers have the flexibility for facile use in a battery, but their transport properties tend to be inferior to inorganics. Thus, there is growing interest in composite electrolytes with inorganic and organic phases in intimate contact. This article begins with a discussion of ion transport in single-phase electrolytes. A dimensionless number (the Newman number) is presented for quantifying the efficacy of electrolytes. An effective medium framework for predicting transport properties of composite electrolytes containing only one conducting phase is then presented. The opportunities and challenges presented by composite electrolytes containing two conducting phases are addressed. Finally, the importance and status of reaction kinetics at the interfaces between solid electrolytes and electrodes are covered, using a lithium-metal electrode as an example.

Type
Frontiers of Solid-State Batteries
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mizushima, K., Jones, P.C.. Weisman, P.J., Goodenough, J.B., Mater. Res. Bull. 15, 783 (1980).CrossRefGoogle Scholar
Harris, W.S., “Electrochemical Studies in Cyclic Esters,” PhD thesis, University of California, Berkeley (1958).Google Scholar
Fong, R., Von Sacken, U., Dahn, J.R., J. Electrochem. Soc. 137, 2009 (1990).CrossRefGoogle Scholar
Fenton, D.E., Parker, J.M., Wright, P.V., Polymer 14, 589 (1973).CrossRefGoogle Scholar
Armand, M.B., Annu. Rev. Mater. Sci. 16, 245 (1986).CrossRefGoogle Scholar
de Gennes, P.G., Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979).Google Scholar
Flory, P.J., Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953).Google Scholar
Mercier, R., Malugani, J.P., Fahys, B., Robert, G., Solid State Ionics 5, 663 (1981).CrossRefGoogle Scholar
Wada, H., Menetrier, M., Levasseur, A., Hagenmuller, P., Mater. Res. Bull. 18, 189 (1983).CrossRefGoogle Scholar
Kamaya, N., Homma, K., Yamakawa, Y., Hirayama, M., Kanno, R., Yonemura, M., Kamiyama, T., Kato, Y., Hama, S., Kawamoto, K., Mitsui, A., Nat. Mater. 10, 682 (2011).CrossRefGoogle Scholar
Liu, Z., Fu, W., Payzant, E.A., Yu, X., Wu, Z., Dudney, N.J., Kiggans, J., Hong, K., Rondinone, A.J., Liang, C., J. Am. Chem. Soc. 135, 975 (2013).CrossRefGoogle Scholar
Zhang, Z., Kennedy, J.H., Solid State Ionics 38, 217 (1990).CrossRefGoogle Scholar
Monroe, C., Newman, J., J. Electrochem. Soc. 152, A396 (2005).CrossRefGoogle Scholar
Newman, J.S., Thomas-Alyea, K.E., Electrochemical Systems, 3rd ed. (Prentice-Hall, Englewood Cliffs, NJ, 2004).Google Scholar
Ma, Y.P., Doyle, M., Fuller, T.F., Doeff, M.M., De Jonghe, L.C., Newman, J., J. Electrochem. Soc. 142, 1859 (1995).CrossRefGoogle Scholar
Pesko, D.M., Timachova, K., Bhattacharya, R., Smith, M.C., Villaluenga, I., Newman, J., Balsara, N.P., J. Electrochem. Soc. 164, E3569 (2017).CrossRefGoogle Scholar
Shi, J., Vincent, C.A., Solid State Ionics 60, 11 (1993).CrossRefGoogle Scholar
Teran, A.A., Tang, M.H., Mullin, S.A., Balsara, N.P., Solid State Ionics 203, 18 (2011).CrossRefGoogle Scholar
Bruce, P.G., Vincent, C.A., J. Electroanal. Chem. 225, 1 (1987).CrossRefGoogle Scholar
Watanabe, M., Rikukawa, M., Sanui, K., Ogata, N., J. Appl. Phys. 58, 736 (1985).CrossRefGoogle Scholar
Doyle, M., Newman, J., J. Electrochem. Soc. 142, 3465 (1995).CrossRefGoogle Scholar
Balsara, N.P., Newman, J., J. Electrochem. Soc. 162, A2720 (2015).CrossRefGoogle Scholar
Villaluenga, I., Wujcik, K.H., Tong, W., Devaux, D., Wong, D.H.C., DeSimone, J.M., Balsara, N.P., Proc. Natl. Acad. Sci. U.S.A. 113, 52 (2016).CrossRefGoogle Scholar
Sun, X.G., Reeder, C.L., Kerr, J.B., Macromolecules 37, 2219 (2004).CrossRefGoogle Scholar
Bouchet, R., Maria, S., Meziane, R., Aboulaich, A., Lienafa, L., Bonnet, J.P., Phan, T.N.T., Bertin, D., Gigmes, D., Devaux, D., Denoyel, R., Armand, M., Nat. Mater. 12, 452 (2013).CrossRefGoogle Scholar
Doyle, M., Fuller, T.F., Newman, J., Electrochim. Acta 39, 2073 (1994).CrossRefGoogle Scholar
Hallinan, D.T., Balsara, N.P., Annu. Rev. Mater. Res. 43, 503 (2013).CrossRefGoogle Scholar
Pesko, D.M., Jung, Y., Hasan, A.L., Webb, M.A., Coates, G.W., Miller, T.F., Balsara, N.P., Solid State Ionics 289 118 (2016).CrossRefGoogle Scholar
Lascaud, S., Perrier, M., Vallee, A., Besner, S., Prudhomme, J., Armand, M., Macromolecules 27, 7469 (1994).CrossRefGoogle Scholar
Oparaji, O., Narayanan, S., Sandy, A., Ramakrishnan, S., Hallinan, D., Macromolecules 51, 2591 (2018).CrossRefGoogle Scholar
Sax, J., Ottino, J.M., Polym. Eng. Sci. 23, 165 (1983).CrossRefGoogle Scholar
Villaluenga, I., Chen, X.C., Devaux, D., Hallinan, D.T., Balsara, N.P., Macromolecules 48, 358 (2015).CrossRefGoogle Scholar
Shen, K.-H., Brown, J.R., Hall, L.M., ACS Macro Lett . 7, 1092 (2018).Google Scholar
Desmet, G., Deridder, S., J. Chromatogr. A 1218, 32 (2011).CrossRefGoogle Scholar
Maxwell, J.C., Treatise on Electricity and Magnetism, 3rd ed. (Academic Reprints, Stanford, CA, 1953), vol. 1.Google Scholar
Torquato, S., Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer, New York, 2013).Google Scholar
Matsen, M.W., Bates, F.S., Macromolecules 29, 1091 (1996).CrossRefGoogle Scholar
Cochran, E.W., Garcia-Cervera, C.J., Fredrickson, G.H., Macromolecules 39, 2449 (2006).CrossRefGoogle Scholar
Villaluenga, I., Pesko, D.M., Timachova, K., Feng, Z., Newman, J., Srinivasan, V., Balsara, N.P., J. Electrochem. Soc. 165, A2766 (2018).CrossRefGoogle Scholar
Croce, F., Appetecchi, G.B., Persi, L., Scrosati, B., Nature 394, 456 (1998).CrossRefGoogle Scholar
Golodnitsky, D., Ardel, G., Peled, E., Solid State Ionics 147, 141 (2002).CrossRefGoogle Scholar
Gurevitch, I., Buonsanti, R., Teran, A.A., Gludovatz, B., Ritchie, R.O., Cabana, J., Balsara, N.P., J. Electrochem. Soc. 160, A1611 (2013).CrossRefGoogle Scholar
Gast, A.P., Leibler, L., Macromolecules 19, 686 (1986).CrossRefGoogle Scholar
Bruggeman, D.A.G., Ann. Phys. 416, 636 (1935).CrossRefGoogle Scholar
Thorat, I.V., Stephenson, D.E., Zacharias, N.A., Zaghib, K., Harb, J.N., Wheeler, D.R., J. Power Sources 188, 592 (2009).CrossRefGoogle Scholar
Seino, Y., Ota, T., Takada, K., Hayashi, A., Tatsumisago, M., Energy Environ. Sci. 7, 627 (2014).CrossRefGoogle Scholar
Kato, Y., Hori, S., Saito, T., Suzuki, K., Hirayama, M., Mitsui, A., Yonemura, M., Iba, H., Kanno, R., Nat. Energy 1, 16030 (2016).CrossRefGoogle Scholar
Keller, M., Appetecchi, G.B., Kim, G.-T., Sharova, V., Schneider, M., Schuhmacher, J., Roters, A., Passerini, S., J. Power Sources 353, 287 (2017).CrossRefGoogle Scholar
Skaarup, S., West, K., Julian, P.M., Thomas, D.M., Solid State Ionics 40–1, 1021 (1990).CrossRefGoogle Scholar
MacFarlane, D.R., Newman, P.J., Nairn, K.M., Forsyth, M., Electrochim. Acta 43, 1333 (1998).CrossRefGoogle Scholar
Zheng, J., Hu, Y.-Y., ACS Appl. Mater. Interfaces 10, 4113 (2018).CrossRefGoogle Scholar
Mehrotra, A., Ross, P.N., Srinivasan, V., J. Electrochem. Soc. 161, A1681 (2014).CrossRefGoogle Scholar
Schleutker, M., Bahner, J., Tsai, C.L., Stolten, D., Korte, C., Phys. Chem. Chem. Phys. 19, 26596 (2017).CrossRefGoogle Scholar
Bard, A.J., Faulkner, L.R., Electrochemical Methods, Fundamentals and Applications (Wiley, New York, 2001).Google Scholar
Driscoll, P.F., Yang, L., Gervais, M., Kerr, J.B., ECS Trans . 33, 33 (2011).CrossRefGoogle Scholar
Scrosati, B., Croce, F., Panero, S., J. Power Sources 100, 93 (2001).CrossRefGoogle Scholar
Hallinan, D.T. Jr., Rausch, A., McGill, B., Chem. Eng. Sci. 154, 34 (2016).CrossRefGoogle Scholar
Sequeira, C.A.C., Hooper, A., Solid State Ionics 9–10, 1131 (1983).CrossRefGoogle Scholar
Swiderska-Mocek, A., Lewandowski, A., J. Solid State Electrochem. 21, 1365 (2017).CrossRefGoogle Scholar
Wu, S.-L., Javier, A.E., Devaux, D., Balsara, N.P., Srinivasan, V., J. Electrochem. Soc. 161, A1836 (2014).CrossRefGoogle Scholar
Jasinski, R., in Advances in Electrochemistry and Electrochemical Engineering, Delahey, P., Tobias, C.W., Eds. (Interscience, New York, 1971), vol. 8, pp. 253335.Google Scholar
Hedges, W.M., Pletcher, D., J. Chem. Soc. Faraday Trans. 1 82, 179 (1986).CrossRefGoogle Scholar
Chiku, M., Tsujiwaki, W., Higuchi, E., Inoue, H., J. Power Sources 244, 675 (2013).CrossRefGoogle Scholar