Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T08:40:03.078Z Has data issue: false hasContentIssue false

Polymer Adsorption

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Long polymer chains adsorbed onto solid surfaces are important in a wide range of applications and are relevant to many issues in biology and medicine. Adsorbed polymer layers used widely in the stabilization of colloidal suspensions, for example, are essential to the formulation of paints, coatings, printing inks, drilling needs, and ceramics processing. Adsorbed polymer layers also play a crucial role in many tribological applications such as boundary lubricants.

The interfacial behavior of biological macromolecules (such as proteins) plays an important role in biomedical applications as well as in the function of living organisms. The development of biocompatible solid materials that can be used safely and efficiently in vascular and joint prostheses, catheters, artificial-heart valves and whole hearts, cardiac-arrest devices, and hemodialysis cartridges is critically important. In some instances, the adsorption of biological macromolecules onto the artificial material can lead to deleterious effects. For example, many vascular grafts and catheters fail because of thrombotic occlusion initiated by protein adsorption. Protein adsorption is also the initial subprocess that leads to plaque formation in teeth and the fouling of contact lenses. Given the central role of protein adsorption in many physiological systems, and the great benefits that could be derived by designing materials that do not adsorb biological macromolecules, understanding the interfacial behavior of biological polymers is important.

The ultimate goal of research in polymer adsorption is to facilitate the manipulation of the properties of adsorbed polymer layers (or polymer-solid interfaces) so that materials with required properties can be fabricated. To take steps toward this goal, understanding how the nature of the polymer, the substrate, and other prevailing conditions (such as the type of solvent) affect the macroscopic properties of the interface is crucial.

Type
Polymer Surfaces and Interfaces
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ulrich, D.R., C&E News (January, 1990).Google Scholar
2.Hench, L.L. and Ulrich, D.R., eds., The Science of Ceramic Chemical Processing (Wiley, NY, 1986).Google Scholar
3.Norde, I., in Surface and Interfacial Aspects of Biomedical Applications, edited by Andrade, J.D. (Plenum Press, 1995).Google Scholar
4.Wei, J.et al., in From Clone to Clinics, edited by Crommelin, D.J.A. and Schellekens, H. (Kluwer Academics, 1990).Google Scholar
5.deGennes, P-G., Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979).Google Scholar
6.Stuart, M.A. Cohen, Cosgrove, T., and Vincent, B., Adv. Coll. Int. Sci. 24 (1986) p. 143.CrossRefGoogle Scholar
7.Fleer, C.J., Surfactant Sci. Ser. 27 (1988) p. 105.Google Scholar
8.Takahashi, A. and Kawaguchi, M., Adv. Polym. Sci. 46 (1982) p. 1.CrossRefGoogle Scholar
9.Patel, S. and Tirrell, M., Ann. Rev. Phys. Chem. 40 (1989) p. 597.CrossRefGoogle Scholar
10.Wax, N., ed., Selected Papers on Noise and Stochastic Processes (Dover, NY, 1954).Google Scholar
11.Silberberg, A., J. Chem. Phys. 48 (1968) p. 2835.CrossRefGoogle Scholar
12.Hoeve, C.A.J., diMarzio, E.A., and Peyser, P., J. Chem. Phys. 42 (1965) p. 2558.CrossRefGoogle Scholar
13.Chakraborty, A.K. and Adriani, P.M., Macromolecules 25 (1992) p. 2470.CrossRefGoogle Scholar
14.Edwards, S.F., Proc. R. Soc. London 85 (1965) p. 613.Google Scholar
15.Helfand, E., J. Chem. Phys. 62 (1975) p. 999.CrossRefGoogle Scholar
16.Roe, R.J., J. Chem. Phys. 60 (1974) p. 4192.CrossRefGoogle Scholar
17.Scheutjens, J.M.H.M. and Fleer, G.J., J. Phys. Chem. 83 (1970) p. 1619.CrossRefGoogle Scholar
18.deGennes, P-G., Macromolecules 15 (1982) p. 492.CrossRefGoogle Scholar
19.Scheutjens, J.M.H.M. and Fleer, G.J., Macromolecules 18 (1985) p. 1882.CrossRefGoogle Scholar
20.Ploehn, H.J. and Russell, W.B., Macromolecules 22 (1989) p. 266.CrossRefGoogle Scholar
21.Muthukumar, M. and Ho, J-S., Macromolecules 22 (1989) p. 965.CrossRefGoogle Scholar
22.Schaefer, D.W., Polym. 25 (1984) p. 387.CrossRefGoogle Scholar
23.Van der Linden, C. and van Leempot, R., J. Coll. Int. Sci. 67 (1978) p. 48.CrossRefGoogle Scholar
24.Cosgrove, T. and Griffiths, P.C., Adv. Coll. Int. Sci. 42 (1992) p. 175.CrossRefGoogle Scholar
25.Robb, I.D. and Smith, R., Polym. 18 (1977) p. 500.CrossRefGoogle Scholar
26.Takahashi, A., Kawaguchi, M., and Kato, T., in Adhesion and Adsorption of Polymers (Plenum, NY, 1986).Google Scholar
27.Parsonage, E., Tirrell, M., Watanabe, H., and Nuzzo, R.G., Macromolecules 24 (1991) p. 1987.CrossRefGoogle Scholar
28.Barnett, K.G., Cosgrove, T., Crowley, T.L., Tadros, Th.F., and Vincent, B., in The Effect of Polymers on Dispersion Stability, edited by Tadros, Th.F. (Academic Press, 1982).Google Scholar
29.Gramain, Ph. and Mayard, Ph., Macromolecules 14 (1981) p. 180.CrossRefGoogle Scholar
30.Israelachvili, J.N., Acc. Chem. Res. 20 (1987) p. 415.CrossRefGoogle Scholar
31.Kawaguchi, M. and Takahashi, A., Adv. Coll. Int. Sci. 37 (1992) p. 219.CrossRefGoogle Scholar
32.Klein, J., Nature 288 (1980) p. 248.CrossRefGoogle Scholar
33.Klein, J., J. Chem. Soc. Faraday Trans. 1 79 (1983) p. 99.CrossRefGoogle Scholar
34.Fleer, G.J. and Scheutjens, J.M.H.M., Adv. Coll. Int. Sci. 16 (1982) p. 341.CrossRefGoogle Scholar
35.Israelachvili, J.N., Tirrell, M., Klein, J., and Almog, Y., Macromolecules 17 (1984) p. 204.CrossRefGoogle Scholar
36.Almog, Y. and Klein, J., J. Coll. Int. Sci. 56 (1985) p. 33.CrossRefGoogle Scholar
37.Ingersent, K., Klein, J., and Pincus, P., Macromolecules 19 (1986) p. 1375.CrossRefGoogle Scholar
38.Ingersent, K., Klein, J., and Pincus, P., Macromolecules 22 (1989).Google Scholar
39.Hu, H-W., van Alsten, J., and Granick, S., Langmuir 5 (1989) p. 270.CrossRefGoogle Scholar
40.deGennes, P-G., Macromolecules 14 (1981) p. 1637.CrossRefGoogle Scholar
41.Cahn, J.W., J. Chem. Phys. 66 (1977) p. 3667.CrossRefGoogle Scholar
42.Klein, J. and Luckham, P.E., Nature 300 (1982) p. 429.CrossRefGoogle Scholar
43.Klein, J. and Luckham, P.E., Macromolecules 17 (1984) p. 1041.CrossRefGoogle Scholar
44.Bradford, W. and Ball, R.C., J. Chem. Soc. Faraday Transactions 1 83 (1987) p. 2515.Google Scholar
45.Hadziioannou, G., Patel, S., Granick, S., and Tirrell, M., J. Am. Chem. Soc. 108 (1986) p. 2869.CrossRefGoogle Scholar
46.Alexander, S., J. Phys. Paris 38 (1977) p. 983.Google Scholar
47.deGennes, P-G., Macromolecules 13 (1980) p. 1069.CrossRefGoogle Scholar
48.Patel, S., Tirrell, M., and Hadziioannou, G., Coll. Surf. 31 (1988) p. 157.CrossRefGoogle Scholar
49.Hirz, S.J., MS thesis, University of Minnesota, Minneapolis (1986).Google Scholar
50.Cosgrove, T., Heath, T., van Lent, B., Leermakers, F., and Scheutjens, J.M.H.M., Macromolecules 20 (1987) p. 1692.CrossRefGoogle Scholar
51.Milner, S.T., Witten, T.A., and Cates, M.E., Macromolecules 21 (1988) p. 2610.CrossRefGoogle Scholar
52.Semenov, A.N., Sov. Phys. JETP 61 (1985) p. 733.Google Scholar
53.Taunton, H.J., Toprakcioglu, C., Fetters, L., and Klein, J., Nature 332 (1988) p. 712.CrossRefGoogle Scholar
54.Milner, S.T., Europhys. Letts. 7 (1988) p. 695.CrossRefGoogle Scholar
55.Milner, S.T., J. Chem. Soc. Faraday Trans. 186 (1990) p. 1349.CrossRefGoogle Scholar
56.Marquez, C.M., Joanny, J-F., and Leibler, L., Macromolecules 21 (1988) p. 1051.CrossRefGoogle Scholar
57.Milner, S.T., Witten, T.A., and Cates, M.E., Macromolecules 22 (1989) p. 853.CrossRefGoogle Scholar
58.Brandon, N.D., Argillier, J-F., and Tirrell, M., Rev. De L'Inst. Franc. Du Petr. 47 (1992) p. 244.CrossRefGoogle Scholar
59.Amiel, C., Sikka, M., Schneider, J.W. Jr., Tsao, Y-H., Tirrell, M., and Mays, J.W., Macromolecules 28 (1995) p. 3125.CrossRefGoogle Scholar
60.Watanabe, H., Patel, S.S., Argillier, J-F., Parsonage, E.E., Mays, J., Brandon, N.D., and Tirrell, M., in Synthesis and Processing of Ceramics: Scientific Issues, edited by Rhine, W.E., Shaw, T.M., Gottschall, R.J., and Chen, Y. (Mater. Res. Soc. Symp. Proc. 249, Pittsburgh, 1992) p. 255.Google Scholar
61.Pincus, P., Macromolecules 24 (1991) p. 2912.CrossRefGoogle Scholar
62.Frauenfelder, H. and Wolynes, P.G., Phys. Today 47 (1994) p. 58.CrossRefGoogle Scholar
63.Shakhnovich, E.I. and Gutin, A.M., Nature 346 (1990) p. 773.CrossRefGoogle Scholar
64.Sali, A., Shakhnovich, E.I., and Karplus, M., Nature 369 (1994) p. 248.Google Scholar
65.Marquez, C.M. and Joanny, J-F., Macromolecules 23 (1990) p. 268.CrossRefGoogle Scholar
66.Cosgrove, T., Finch, N.A., and Webster, J.R.P., Macromolecules 23 (1990) p. 3353.CrossRefGoogle Scholar
67.Gutman, L. and Chakraborty, A.K., J. Chem. Phys. 101 (1994) p. 10,074.CrossRefGoogle Scholar
68.Gutman, L. and Chakraborty, A.K., J. Chem. Phys. 103 (1995).CrossRefGoogle Scholar
69.Joanny, J-F., J. Phys. II (Fr.) 4 (1994) p. 1281.Google Scholar
70.Shaffer, J.S., Macromolecules 28 (1995).CrossRefGoogle Scholar
71.Skouri, M., Munch, J.P., Candau, J., Neyret, S., and Candau, F., Macromolecules 27 (1994) p. 69; L. Quali, S. Neyret, F. Candau, and E. Pefferkorn, in press (1995).CrossRefGoogle Scholar
72.Lee, H.F. and Gardella, J.A. Jr., Polym. 33 (1992) p. 4250.CrossRefGoogle Scholar
73.Gutman, L. and Chakraborty, A.K., “Sequence-Fluctuation-Dependent Adsorption-Depletion Transition for Random Heteropolymers” (unpublished manuscript).Google Scholar
74.Chakraborty, A.K. and Shakhnovich, E.I., J. Chem. Phys. 103 (1995).CrossRefGoogle Scholar
75.Bratko, D., Chakraborty, A.K., and Shakhnovich, E.I., “Frozen Phases of Random Heteropolymers in Disordered Media” (unpublished manuscript).Google Scholar