Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-15T11:15:34.857Z Has data issue: false hasContentIssue false

Physics and chemistry of material surfaces under ambient conditions of gases and liquids: What’s new?

Published online by Cambridge University Press:  09 August 2013

Miquel Salmeron*
Affiliation:
Lawrence Berkeley National Laboratory, Materials Science Division; [email protected]
Get access

Abstract

The atoms at the surfaces of materials represent the frontier separating the bulk from the surrounding medium. Over the last decades, scientists have intensely studied the structure and properties of surfaces with the goal of understanding and improving the electronic and chemical properties of materials. The surface–medium interaction determines wetting, friction, chemical, biological, and electronic properties. The activity of catalysts, phenomena occurring in water droplets and particles in the atmosphere, and the electronic properties of semiconductor devices are direct consequences of surface-environment interactions. While the need to pursue studies in the normal environment that surrounds a material has always been recognized, the techniques used in the past have only partially fulfilled this need, as most of them work best under high vacuum conditions. My research over the last 10 years has focused on discovering the structure of a surface and its dynamics in real life—in everyday environments. This required the development of new techniques and methods. I present some of the new tools developed in my laboratory and new properties that were discovered by their application in the areas of environmental science, surface chemistry, and catalysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Siegbahn, K.M., Nobel Lecture, “Electron Spectroscopy for Atoms, Molecules and Condensed Matter” (1981).Google Scholar
Siegbahn, H., Svensson, S., Lundholm, M., J. Electron. Spectrosc. Relat. Phenom. 24, 205 (1981).CrossRefGoogle Scholar
Ogletree, D.F., Bluhm, H., Lebedev, G., Fadley, C., Hussain, Z., Salmeron, M., Rev. Sci. Instrum. 73 (11), 3872 (2002).CrossRefGoogle Scholar
Salmeron, M., Schlögl, R., Surf. Sci. Rep. 63, 169 (2008).CrossRefGoogle Scholar
Bluhm, H., Hävercker, M., Knip-Gericke, A., Teschner, D., Eleimenov, E., Bukhtiyarov, V.I., Ogletree, D.F., Salmeron, M., Schlögl, R., J. Phys. Chem. B 108, 14340 (2004).CrossRefGoogle Scholar
Ketteler, G., Ogletree, D.F., Bluhm, H., Liu, H., Hebenstreit, E.L.D., Salmeron, M., J. Am. Chem. Soc. 127, 18269 (2005).CrossRefGoogle Scholar
Lundgren, E., Kresse, G., Klein, C., Borg, M., Andersen, J.N., De Santis, M., Gauthier, Y., Konvicka, C., Schmid, M., Varga, P., Phys. Rev. Lett. 88, 246103 (2002).CrossRefGoogle Scholar
Tao, F., Dag, S., Wang, L.-W., Liu, Z., Butcher, D.R., Salmeron, M., Somorjai, G.A., Science 327, 850 (2010).CrossRefGoogle Scholar
Tränkenschuh, B., Papp, C., Fuhrmann, T., Denecke, R., Steinruck, H., Surf. Sci. 601, 1108 (2007).CrossRefGoogle Scholar
Ertl, G., Neumann, M., Streit, K.M., Surf. Sci. 64, 393 (1977).CrossRefGoogle Scholar
Lipp, M.J., Evans, W.J., Baer, B.J., Yoo, C.-S., Nat. Mater. 4, 211 (2005).CrossRefGoogle Scholar
Tao, F., Grass, M.E., Zhang, Y., Butcher, D.R., Renzas, J.R., Liu, Z., Chung, J.Y., Mun, B.S., Salmeron, M., Somorjai, G.A., Science 322, 932 (2008).CrossRefGoogle Scholar
Tao, F., Grass, M.E., Zhang, Y., Butcher, D.R., Liu, Z., Aloni, S., Altoe, V., Alayoglu, S., Renzas, J.R., Tsung, C.-K., Aksoy, F., Salmeron, M., Somorjai, G.A., J. Am. Chem Soc. 132 (25), 8697 (2010).CrossRefGoogle Scholar
Faraday, M., Philos. Mag. 17, 162 (1840).CrossRefGoogle Scholar
Elbaum, M., Lipson, S.G., Dash, J.G., J. Cryst. Growth 129, 491 (1993).CrossRefGoogle Scholar
Myneni, S., Luo, Y., Näslund, L.A., Ojamäe, L., Ogasawara, H., Pelmenschikov, A., Väterlein, P., Heske, C., Pettersson, L.G.M., Nilsson, A., J. Phys. Condens. Matter 14, L213 (2002).CrossRefGoogle Scholar
Bluhm, H., Ogletree, D.F., Fadley, C.S., Hussain, Z., Salmeron, M., J. Phys. Condens. Matter 14, L227 (2002).CrossRefGoogle Scholar
Knipping, E.M., Lakin, M.J., Foster, K.L., Jungwirth, P., Tobias, D.J., Gerber, R.B., Dabdub, D., Finlayson-Pitts, B.J., Science 288, 301 (2000).CrossRefGoogle Scholar
Jungwirth, P., Tobias, D.J., J. Phys. Chem. B 105, 10468 (2001).CrossRefGoogle Scholar
Ghosal, S., Hemminger, J.C., Bluhm, H., Mun, B.S., Hebenstreit, E.L.D., Ketteler, G., Ogletree, D.F., Requejo, F., Salmeron, M., Science 307, 563 (2005).CrossRefGoogle Scholar