Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-05T09:28:58.096Z Has data issue: false hasContentIssue false

Particle Polarization and Nonlinear Effects in Electrorheological Suspensions

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The phenomenon of electrorheology (ER), described in the guest editors' introduction to this issue, can largely be explained by electrostatic interactions between particles by an externally applied electric field. The purpose of this article is to review particle-polarization mechanisms active in ER suspensions and to highlight some poorly understood electrostatic phenomena that inhibit the commercialization of ER technology.

Figure 1 plots the apparent viscosity of a 20-wt% suspension of alumina particles in silicone oil as a function of shear rate for different electric field strengths. The viscosity changes are most pronounced at small deformation rates. At small shear rates the viscosity is proportional to E2 where E is the electric field strength.

Type
The Materials Science of Field-Responsive Fluids
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Block, H. and Kelly, J.P, J. Phys. D. Appl. Phys. 21 (1988) p. 1661.CrossRefGoogle Scholar
2.Winslow, W.M., J. Appl. Phys. 20 (1949) p. 1137.CrossRefGoogle Scholar
3.Parthasarathy, M. and Klingenberg, D.J., Mat. Sci. Eng. R 17 (1996) p. 57.CrossRefGoogle Scholar
4.Rankin, P.J. and Klingenberg, D.J., J. Rheol. in press.Google Scholar
5.Kim, Y.D. and Klingenberg, D.J., J. Coll. I. Sci. 183 (1996) p. 568.CrossRefGoogle Scholar
6.Marshall, L., Zukoski, C.F., and Goodwin, J.W., J. Chem. Soc. Trans. Faraday Society I 85 (1989) p. 2785.CrossRefGoogle Scholar
7.Klingenberg, D.J., J. Rheol. 37 (1993) p. 199.CrossRefGoogle Scholar
8.Parthasarathy, M., Ahn, K.H., Belongia, B.M., and Klingenberg, D.J., Int. J. Mod. Phys. B 8 (1994) p. 2789.CrossRefGoogle Scholar
9.Atten, P., Boissy, C., and Foulc, J-N., J. Intell. Mat. Syst. Struct. 7 (1996) p. 573.CrossRefGoogle Scholar
10.Wu, C.W., Chen, Y., Tang, X., and Conrad, H., Int. J. Mod. Phys. B 10 (23/24) (1996) p. 3327.CrossRefGoogle Scholar
11.Sakai, T., Kobayashi, K., and Sato, M., J. Coll. I. Sci. 180 (1996) p. 315.CrossRefGoogle Scholar
12.Davis, L.C., J. Appl. Phys. 81 (1997) p. 1985.CrossRefGoogle Scholar
13.Atten, P., Foulc, J-N., and Felici, N., Int. J. Mod. Phys. B 8 (1994) p. 2731.CrossRefGoogle Scholar
14.Foulc, J-N., Atten, P., and Felici, N., J. Electrostatics 33 (1994) p. 103.CrossRefGoogle Scholar
15.Felici, N.J., J. Electrostatics 40 (1997) p. 567.CrossRefGoogle Scholar
16.Boissy, C., Atten, P., and Foulc, J-N., Int. J. Mod. Phys. B 10 (1996) p. 2991.CrossRefGoogle Scholar