Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T15:56:43.303Z Has data issue: false hasContentIssue false

Overview of Phase-Change Chalcogenide Nonvolatile Memory Technology

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Phase-change nonvolatile semiconductor memory technology is based on an electrically initiated, reversible rapid amorphous-to-crystalline phase-change process in multicomponent chalcogenide alloy materials similar to those used in rewriteable optical disks. Long cycle life, low programming energy, and excellent scaling characteristics are advantages that make phase-change semiconductor memory a promising candidate to replace flash memory in future applications. Phase-change technology is being commercialized by a number of semiconductor manufacturers. Fundamental processes in phase-change semiconductor memory devices, device performance characteristics, and progress toward commercialization of the technology are reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ovshinsky, S.R.Phys. Rev. Lett. 21 (1968) p. 1450.CrossRefGoogle Scholar
2Feinleib, J.Neufville, J. de, Moss, S.C. and Ovshinsky, S.R.Appl. Phys. Lett. 18 (1971) p. 254.Google Scholar
3Fritzsche, H.Annu. Rev. Mater. Sci. 2 (1972) p. 697.CrossRefGoogle Scholar
4Adler, D.Scientific American 236 (36) (1977).CrossRefGoogle Scholar
5Takenaga, M.Yamada, N.Ohara, S.Nishiuchi, K.Nagashima, M.Kashihara, T.Nakamura, S. and Yashimata, T. in Proc. SPIE 420 (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1983) p. 173.Google Scholar
6Neale, R.G.Nelson, D.L. and Moore, G.E.Electronics (September 1970) p. 56.Google Scholar
7Chen, M.Rubin, K. and Barton, R.Appl. Phys. Lett. 49 (1986) p. 502.CrossRefGoogle Scholar
8Terao, M.Nishida, T.Miyauchi, Y.Horiguchi, S.Kaku, T. and Ohta, N. in Proc. SPIE 695 (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1986) p. 105.Google Scholar
9Akahira, N.Yamada, N.Kimura, K. and Takao, M. in Proc. SPIE 899 (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1988) p. 188.Google Scholar
10Ohta, T.Inoue, K.Uchida, M.Yoshida, K.Akiyama, T.Furakawa, S.Nagata, K. and Nakamura, S.Proc. Int. Symp. Optical Memory (Kobe, Japan, 1989); T. Ohta, K. Inoue, M. Uchida, K. Yoshida, T. Akiyama, S. Furakawa, K. Nagata, and S. Nakamura, Jpn. J. Appl. Phys. 28, Suppl. 28–3 (1989) p. 123.Google Scholar
11Gonzalez-Hernandez, J., Chao, B.S.Strand, D.Ovshinsky, S.R.Pawlik, D. and Gasiorowski, P.Appl. Phys. Comm. 11 (4) (1992) p. 557.Google Scholar
12Ovshinsky, S.R.Hudgens, S.J.Czubatyj, W.Strand, D.A. and Wicker, G.C. “Electrically erasable phase change memory,” U.S. Patent No. 5,166,758 (November 24, 1992).Google Scholar
13Wicker, G. “A Comprehensive Model of Submicron Chalcogenide Switching Devices,” PhD dissertation, Wayne State University, Detroit, Mich. (1996).Google Scholar
14Ovshinsky, S.R.IEEE Proc. CAS 1 (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1998) p. 33.Google Scholar
15Wicker, G. in Proc. SPIE Conf. Electronics and Structures for MEMS, Vol. 3891 (SPIE—The International International Society for Optical Engineering, Bellingham, WA, 1999) p. 2.Google Scholar
16Okuda, M.Naito, H. and Matsushita, T. in Proc. Int. Symp. Optical Memory (1991) p. 73.Google Scholar
17Coombs, J.H.Jongenelis, A.P.J.Es-Spiekman, W. van, and Jacobs, B.A.J.J. Appl. Phys. 78 (1995) p. 4906 and p. 4918.CrossRefGoogle Scholar
18Lai, S. and Lowrey, T. in 2001 IEDM Tech. Dig. Int. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2001) p. 36.5.1.Google Scholar
19Mott, N.F. and David, E.A.Electronic Processes in Non-Crystalline Materials (Oxford University Press, 1971).Google Scholar
20Cohen, M.H.Fritzsche, H. and Ovshinsky, S.R.Phys. Rev. Lett. 22 (1969) p. 1065.CrossRefGoogle Scholar
21Kastner, M.Adler, D. and Fritzsche, H.Phys. Rev. Lett. 37 (1976) p. 1504.CrossRefGoogle Scholar
22Pirovano, A.Lacaita, A.Benvenuti, A.Pellizzer, F. and Bez, R.IEEE Trans. Electron. Dev. 51 (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2004) p. 452.Google Scholar
23Reinhard, D.K.Arntz, F.O. and Adler, D.Appl. Phys. Lett. 23 (1973) p. 521.Google Scholar
24Regel, A.R.Andreev, A.A. and Mamadaliev, M.J. Non-Cryst. Solids 8–10 (1972) p. 455.CrossRefGoogle Scholar
25Adler, D.Shur, M.S.Silver, M. and Ovshinsky, S.R.J. Appl. Phys. 51 (1980) p. 3289.CrossRefGoogle Scholar
26Maimon, J.Hunt, K.Rogers, J.Burcin, L. and Knowles, K.Proc. NVTMS Conf. (2002).Google Scholar
27Gill, M.Lowrey, T. and Park, J. in ISSCC 2002 Tech. Dig. (2002) paper No. 12.4.Google Scholar
28Pellizzer, F.Pirovano, A.Ottogalli, F.Magistretti, M.Scaravaggi, M.Zuliani, P.Tosi, M.Benvenuti, A.Besana, P.Cadeo, S.Marangon, T.Morandi, R.Piva, R.Spandre, A.Zonca, R.Modelli, A.Varesi, E.Lowrey, T.Lacaita, A.Casagrande, G.Cappelleti, P. and Bez, R. in 2004 Symp. on VLSI Technol. Dig. Tech. Papers (2004) p. 18.Google Scholar
29Lee, S.H.Hwang, Y.N.Lee, S.Y.Ryoo, K.C.Ahn, S.J.Koo, H.C.Jeong, C.W.Kim, Y.T.Koh, G.H.Jeong, G.T.Jeong, H.S. and Kim, K. in 2004 Symp. on VLSI Technol. Dig. Tech. Papers (2004) p. 20.Google Scholar
30Privitera, S.Bongiorno, C.Rimini, E.Zonca, R.Pirovano, A. and Bez, R. in Advanced Data Storage Materials and Characterization Techniques, edited by Ahner, J.W.Levy, J.Hesselink, L. and Mijiritskii, A. (Mater. Res. Soc. Symp. Proc. 803, Warrendale, PA, 2004) p. 83.Google Scholar
31Lowrey, T.A.Hudgens, S.J.Czubatyj, W.Dennison, C.H.Kostylev, S.A. and Wicker, G.C. in Advanced Data Storage Materials and Characterization Techniques, edited by Ahner, J.W.Levy, J.Hesselink, L. and Mijiritskii, A. (Mater. Res. Soc. Symp. Proc. 803, Warrendale, PA, 2004) p. 101.Google Scholar
32Pirovano, A.Lacaita, A.L.Benvenuti, A.Pellizer, F.Hudgens, S. and Bez, R. in 2003 IEDM Tech. Dig. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2003) paper No. 29.6.1.Google Scholar