Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-27T20:06:56.674Z Has data issue: false hasContentIssue false

Organic single crystals: Addressing the fundamentals of organic electronics

Published online by Cambridge University Press:  14 January 2013

Vitaly Podzorov*
Affiliation:
Department of Physics and Astronomy, Rutgers University; [email protected]
Get access

Abstract

Organic optoelectronics is an emerging field that exploits the unique properties of conjugated organic materials to develop new applications that require a combination of performance, low cost, light weight, and processability. For instance, disposable or wearable electronics, light-emitting diodes, smart tags, sensors, and solar cells all fall into this active area of research. Single crystals of conjugated organic molecules are, undoubtedly, the materials with the highest degree of order and purity among the variety of different forms of organic semiconductors. Electronic devices comprising these materials, such as single-crystal transistors and photoconductors developed during the last decade, are by far the best performers in terms of the fundamental parameters such as charge-carrier mobility, exciton diffusivity, concentration of defects, and operational stability. Extremely low density of defects and the resultant remarkable electrical characteristics of some of the organic single-crystal devices allow experimental access to the intrinsic charge transport properties not dominated by charge scattering and trapping. This enables basic studies of the physics of organic semiconductors, including examining the intrinsic structure-property relationship, thus providing a test bed for charge and energy transport theories. The goal of this issue of MRS Bulletin is to provide a broad overview of the state of the art of the field of organic semiconductor single-crystal materials, devices, and theory.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Forrest, S.R., Nature 428, 911 (2004).Google Scholar
Silinsh, E.A., Čápek, V., Organic Molecular Crystals: Interaction, Localization, and Transport Phenomena (AIP Press, New York, 1994).Google Scholar
Pope, M., Swenberg, C.E., Electronic Processes in Organic Crystals and Polymers, 2nd Edition (Oxford University Press, New York, London, 1999).CrossRefGoogle Scholar
de Boer, R.W.I., Gershenson, M.E., Morpurgo, A.F., Podzorov, V., Phys. Status Solidi 201, 1302 (2004).CrossRefGoogle Scholar
Gershenson, M.E., Podzorov, V., Morpurgo, A.F., Rev. Mod. Phys. 78, 973 (2006).Google Scholar
Karl, N., in Organic Electronic Materials, Farchioni, R., Grosso, G., Eds. (Springer-Verlag, Berlin, Heidelberg, 2001), pp. 283326.Google Scholar
Bao, Z., Locklin, J., Organic Field-Effect Transistors (Taylor & Francis, Boca Raton, FL, 2007).Google Scholar
Podzorov, V., Pudalov, V.M., Gershenson, M.E., Appl. Phys. Lett. 82, 1739 (2003).CrossRefGoogle Scholar
Podzorov, V., Sysoev, S.E., Loginova, E., Pudalov, V.M., Gershenson, M.E., Appl. Phys. Lett. 83, 3504 (2003).Google Scholar
de Boer, R.W.I., Klapwijk, T.M., Morpurgo, A.F., Appl. Phys. Lett. 83, 4345 (2003).CrossRefGoogle Scholar
Newman, C.R., Chesterfield, R.J., Merlo, J.A., Frisbie, C.D., Appl. Phys. Lett. 85, 422 (2004).CrossRefGoogle Scholar
Takeya, J., Goldmann, C., Haas, S., Pernstich, K.P., Ketterer, B., Batlogg, B., J. Appl. Phys. 94, 5800 (2003).CrossRefGoogle Scholar
Takeya, J., Nishikawa, T., Takenobu, T., Kobayashi, S., Iwasa, Y., Mitani, T., Goldmann, C., Krellner, C., Batlogg, B., Appl. Phys. Lett. 85, 5078 (2004).CrossRefGoogle Scholar
Butko, V.Y., Chi, X., Lang, D.V., Ramirez, A.P., Appl. Phys. Lett. 83, 4773 (2003).Google Scholar
Podzorov, V., Menard, E., Borissov, A., Kiryukhin, V., Rogers, J.A., Gershenson, M.E., Phys. Rev. Lett. 93, 086602 (2004).Google Scholar
Molinari, A.S., Alves, H., Chen, Z., Facchetti, A., Morpurgo, A.F., J. Am. Chem. Soc. 131, 2462 (2009).Google Scholar
Minder, N.A., Ono, S., Chen, Z., Facchetti, A., Morpurgo, A.F., Adv. Mater. 24, 503 (2012).Google Scholar
Minarul Islam, Md., Pola, S., Tao, Y.-T., Chem. Commun. 47, 6356 (2011).Google Scholar
Sundar, V.C., Zaumseil, J., Podzorov, V., Menard, E., Willett, R.L., Gershenson, M.E., Rogers, J.A., Science 303, 1644 (2004).CrossRefGoogle Scholar
Reese, C., Bao, Z., Adv. Mater. 19, 4535 (2007).Google Scholar
Xia, Y., Frisbie, C.D., Appl. Phys. Lett. 90, 162106 (2007).CrossRefGoogle Scholar
Zeis, R., Besnard, C., Siegrist, T., Schlockermann, C., Chi, X., Kloc, Ch., Chem. Mater. 18, 244 (2006).Google Scholar
Lee, J.Y., Roth, S., Park, Y.W., Appl. Phys. Lett. 88, 252106 (2006).Google Scholar
Ostroverkhova, O., Cooke, D.G., Hegmann, F.A., Tykwinski, R.R., Parkin, S.R., Anthony, J.E., Appl. Phys. Lett. 89, 192113 (2006).CrossRefGoogle Scholar
Ortmann, F., Bechstedt, F., Hannewald, K., Phys. Status Solidi B 248, 511 (2011).Google Scholar
Yin, S.W., Lv, Y.F., Org. Electron. 9, 852 (2008).Google Scholar
de Wijs, G.A., Mattheus, C.C., de Groot, R.A., Palstra, T.T.M., Synth. Met. 139, 109 (2003).CrossRefGoogle Scholar
Wen, S.-H., Li, A., Song, J., Deng, W.-Q., Han, K.-L., Goddard, W.A. III, J. Phys. Chem. B 113, 8813 (2009).Google Scholar
Podzorov, V., Menard, E., Rogers, J.A., Gershenson, M.E., Phys. Rev. Lett. 95, 226601 (2005); Podzorov, V., Menard, E., Rogers, J.A., Gershenson, M.E., arXiv:cond-mat/0508006vl, July 30 (2005).CrossRefGoogle Scholar
Takeya, J., Tsukagoshi, K., Aoyagi, Y., Takenobu, T., Iwasa, Y., Jpn. J. Appl. Phys. 44, L1393 (2005).Google Scholar
Sekitani, T., Takamatsu, Y., Nakano, S., Sakurai, T., Someya, T., Appl. Phys. Lett. 88, 253508 (2006).Google Scholar
Chang, J.-F., Sakanoue, T., Olivier, Y., Uemura, T., Dufourg-Madec, M.-B., Yeates, S.G., Cornil, J., Takeya, J., Troisi, A., Sirringhaus, H., Phys. Rev. Lett. 107, 066601 (2011).CrossRefGoogle Scholar
Okada, Y., Sakai, K., Uemura, T., Nakazawa, Y., Takeya, J., Phys. Rev. B 84, 245308 (2011).Google Scholar
Minder, N.A., Ono, S., Chen, Z., Facchetti, A., Morpurgo, A.F., Adv. Mater. 24, 503 (2012).Google Scholar
Ostroverkhova, O., Cooke, D.G., Hegmann, F.A., Anthony, J.E., Podzorov, V., Gershenson, M.E., Jurchescu, O.D., Palstra, T.T.M., Appl. Phys. Lett. 88, 162101 (2006).Google Scholar
Tao, S., Matsuzaki, H., Uemura, H., Yada, H., Uemura, T., Takeya, J., Hasegawa, T., Okamoto, H., Phys. Rev. B 83, 075204 (2011).Google Scholar
Takenobu, T., Bisri, S.Z., Takahashi, T., Yahiro, M., Adachi, C., Iwasa, Y., Phys. Rev. Lett. 100, 066601 (2008).Google Scholar
Reyes-Martinez, M.A., Ramasubramaniam, A., Briseno, A.L., Crosby, A.J., Adv. Mater. 24 (41), 5548 (2012).Google Scholar
Smith, M.B., Michl, J., Chem. Rev. 110, 6891 (2010).Google Scholar
Najafov, H., Biaggio, I., Podzorov, V., Calhoun, M.F., Gershenson, M.E., Phys. Rev. Lett. 96, 056604 (2006).Google Scholar
Najafov, H., Lee, B., Zhou, Q., Feldman, L.C., Podzorov, V., Nat. Mater. 9, 938 (2010).Google Scholar
Irkhin, P., Biaggio, I., Phys. Rev. Lett. 107, 017402 (2011).Google Scholar
Ryasnyanskiy, A., Biaggio, I., Phys. Rev. B 84, 193203 (2011).Google Scholar
Ahn, T.S., Mueller, A.M., Al-Kaysi, R.O., Spano, F.C., Norton, J.E., Belijonne, D., Bredas, J.-L., Bardeen, C.J., J. Chem. Phys. 128, 054505 (2008).Google Scholar
Muller, A.M., Avlasevich, Y.S., Schoeller, W.W., Mullen, K., Bardeen, C.J., JACS 129, 14240 (2007).CrossRefGoogle Scholar
Laudise, R.A., Kloc, Ch., Simpkins, P.G., Siegrist, T., J. Cryst. Growth 187, 449 (1998).Google Scholar
www.physics.rutgers.edu/∼podzorov/index.php.Google Scholar
Anthony, J., Chem. Rev. 106, 5028 (2006).Google Scholar
Dickey, K.C., Anthony, J.E., Loo, Y.-L., Adv. Mater. 18, 1721 (2006).CrossRefGoogle Scholar
Gundlach, D.J., Royer, J.E., Park, S.K., Subramanian, S., Jurchescu, O.D., Hamadani, B., Moad, A.J., Kline, R.J., Teague, L.C., Kirillov, O., Richter, C.A., Kushmerick, J.G., Richter, L.J., Parkin, S.R., Jackson, T.N., Anthony, J.E., Nat. Mater. 7, 216 (2008).Google Scholar
Lee, S.S., Kim, C.S., Gomez, E.D., Purushothaman, B., Toney, M.F., Wang, C., Hexemer, A., Anthony, J.E., Loo, Y.-L., Adv. Mater. 21, 3605 (2009).Google Scholar
Uemura, T., Hirose, Y., Uno, M., Takimiya, K., Takeya, J., Appl. Phys. Express 2, 111501 (2009).Google Scholar
Nakayama, K., Hirose, Y., Soeda, J., Yoshizumi, M., Uemura, T., Uno, M., Li, W., Kang, M.J., Yamagishi, M., Okada, Y., Miyazaki, E., Nakazawa, Y., Nakao, A., Takimiya, K., Takeya, J., Adv. Mater. 23, 1626 (2011).Google Scholar
Niemax, J., Tripathi, A.K., Pflaum, J., Appl. Phys. Lett. 86, 122105 (2005).Google Scholar
Chen, Y., Lee, B., Yi, H.T., Lee, S.S., Payne, M.M., Pola, S., Kuo, C.-H., Loo, Y.-L., Anthony, J.E., Tao, Y.T., Podzorov, V., Phys. Chem. Chem. Phys. 14, 14142 (2012).Google Scholar
Briseno, A.L., Tseng, R.J., Ling, M.M., Falcao, E.H.L., Yang, Y., Wudl, F., Bao, Z., Adv. Mater. 18, 2320 (2006).CrossRefGoogle Scholar
Lee, B., Choi, T.-J., Cheong, S.-W., Podzorov, V., Adv. Funct. Mater. 19, 3726 (2009).Google Scholar
Ellison, D.J., Lee, B., Podzorov, V., Frisbie, C.D., Adv. Mater. 23, 502 (2011).Google Scholar
Menard, E., Marchenko, A., Podzorov, V., Gershenson, M.E., Fichou, D., Rogers, J.A., Adv. Mater. 18, 1552 (2006).CrossRefGoogle Scholar
Thompson, R.J., Yadin, B., Grout, Z.J., Hudziak, S., Kloc, C.L., Mitrofanov, O., Curson, N.J., Appl. Phys. Lett. 98, 053302 (2011).CrossRefGoogle Scholar
Nakayama, Y., Machida, S., Minari, T., Tsukagoshi, K., Noguchi, Y., Ishii, H., Appl. Phys. Lett. 93, 173305 (2008).Google Scholar
Machida, S., Nakayama, Y., Duhm, S., Xin, Q., Funakoshi, A., Ogawa, N., Kera, S., Ueno, N., Ishii, H., Phys. Rev. Lett. 104, 156401 (2010).Google Scholar
Krellner, C., Haas, S., Goldmann, C., Pernstich, K.P., Gundlach, D.J., Batlogg, B., Phys. Rev. B 75, 245115 (2007).Google Scholar
Najafov, H., Mastrogiovanni, D., Garfunkel, E., Feldman, L.C., Podzorov, V., Adv. Mater. 23, 981 (2011).Google Scholar
Mitrofanov, O., Lang, D., Kloc, C., Wikberg, J., Siegrist, T., So, W., Sergent, M., Ramirez, A., Phys. Rev. Lett. 97, 166601 (2006).CrossRefGoogle Scholar
Mitrofanov, O., Kloc, C., Siegrist, T., Lang, D., So, W., Ramirez, A., Appl. Phys. Lett. 91, 212106 (2007).Google Scholar
Chen, Y., Lee, B., Fu, D., Podzorov, V., Adv. Mater. 23, 5370 (2011).CrossRefGoogle Scholar
Podzorov, V., Gershenson, M.E., Phys. Rev. Lett. 95, 016602 (2005).Google Scholar
Calhoun, M.F., Hsieh, C., Podzorov, V., Phys. Rev. Lett. 98, 096402 (2007).Google Scholar
Menard, E., Podzorov, V., Hur, S.-H., Gaur, A., Gershenson, M.E., Rogers, J.A., Adv. Mater. 16, 2097 (2004).Google Scholar
Yi, H.T., Chen, Y., Czelen, K., Podzorov, V., Adv. Mater. 23, 5807 (2011).Google Scholar
Xia, Y., Xie, W., Ruden, P.P., Frisbie, C.D., Phys. Rev. Lett. 105, 036802 (2010).Google Scholar
Shimotani, H., Asanuma, H., Takeya, J., Iwasa, Y., Appl. Phys. Lett. 89, 203501 (2006).Google Scholar
Sze, S.M., Ng, K.K., Eds., Physics of Semiconductor Devices (Wiley, New York, 1981).Google Scholar
Merlo, J.A., Frisbie, C.D., J. Polym. Sci., Part B: Polym. Phys. 41, 2674 (2003).Google Scholar
Chesterfield, R.J., Mckeen, J.C., Newman, C.R., Frisbie, C.D., Ewbank, P.C., Mann, K.R., Miller, L.L., J. Appl. Phys. 95, 6396 (2004).Google Scholar
Rivnay, J., Noriega, R., Northrup, J.E., Joseph Kline, R., Toney, M.F., Salleo, A., Phys. Rev. B 83, 121306(R) (2011).CrossRefGoogle Scholar
Haas, S., Stassen, A.F., Schuck, G., Pernstich, K.P., Gundlach, D.J., Batlogg, B., Berens, U., Kirner, H.J., Phys. Rev. B 76, 115203 (2007).Google Scholar
Horowitz, G., J. Mater. Res. 19, 1946 (2004).Google Scholar
Li, Z.Q., Podzorov, V., Sai, N., Martin, M.C., Gershenson, M.E., Di Ventra, M., Basov, D.N., Phys. Rev. Lett. 99, 016403 (2007).CrossRefGoogle Scholar
Bredas, J.L., Beljonne, D., Coropceanu, V., Cornil, J., Chem. Rev. 104, 4971 (2004).Google Scholar
Coropceanu, V., Cornil, J., da Silva, D.A., Olivier, Y., Silbey, R., Bredas, J.L., Chem. Rev. 107, 926 (2007).CrossRefGoogle Scholar
Hannewald, K., Bobbert, P.A., Appl. Phys. Lett. 85, 1535 (2004).CrossRefGoogle Scholar
Troisi, A., Orlandi, G., Phys. Rev. Lett. 96, 086601 (2006).Google Scholar
Troisi, A., Adv. Mater. 19, 2000 (2007).CrossRefGoogle Scholar
Cheung, D.L., Troisi, A., Phys. Chem. Chem. Phys. 10, 5941 (2008).Google Scholar
Fratini, S., Ciuchi, S., Phys. Rev. Lett., 103, 266601 (2009).Google Scholar
Sánchez-Carrera, R.S., Paramonov, P., Day, G.M., Coropceanu, V., Brédas, J.-L., J. Am. Chem. Soc. 132, 14437 (2010).Google Scholar
Zimmerman, P.M., Zhang, Z., Musgrave, C., Nat. Chem. 2, 648 (2010).Google Scholar
Lee, J., Jadhav, P., Baldo, M.A., Appl. Phys. Lett. 95, 033301 (2009).Google Scholar
Chan, W.-L., Ligges, M., Jailaubekov, A., Kaake, L., Miaja-Avila, L., Zhu, X.-Y., Science 334, 1541 (2011).Google Scholar
Käfer, D., Witte, G., Phys. Chem. Chem. Phys. 7, 2850 (2005).Google Scholar
Stingelin-Stutzmann, N., Smits, E., Wondergem, H., Tanase, C., Blom, P., Smith, P., de Leeuw, D., Nat. Mater. 4, 601 (2004).Google Scholar