Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T08:32:29.583Z Has data issue: false hasContentIssue false

Organic Materials Science

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The following article is based on the presentation given by George M. Whitesides, recipient of the 2000 MRS Von Hippel Award, the Materials Research Society's highest honor, at the 2000 MRS Fall Meeting in Boston on November 29, 2000. Whitesides was cited for “bringing fundamental concepts of organic chemistry and biology into materials science and engineering, through his pioneering research on surface modification, self-assembly, and soft lithography.” The article focuses on the growing role of organic chemistry in materials science. Historically, that role has been to provide organic polymers for use in structures, films, fibers, coatings, and so on. Organic chemistry is now emerging as a crucial part of three new areas in materials science. First, it provides materials with complex functionality. Second, it is the bridge between materials science and biology/medicine. Building an interface between biological systems and electronic or optical systems requires close attention to the molecular level of that interface. Third, organic chemistry provides a sophisticated synthetic entry into nanomaterials. Organic molecules are, in fact, exquisitely fabricated nanostructures, assembled with precision on the level of individual atoms. Colloids are a related set of nanostructures, and organic chemistry contributes importantly to their preparation as well.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Greenham, N.C. and Friend, R.H., in Solid State Physics, edited by Ehrenreich, H. and Spaepen, F., Vol. II (Academic Press, San Diego, 1995) p. 1.Google Scholar
2.Tsien, R.Y., Annu. Rev. Biochem. 67 (1998) p. 509.CrossRefGoogle Scholar
3.Kumar, A., Biebuyck, H.A., and White-sides, G.M., Langmuir 10 (1994) p. 1498.CrossRefGoogle Scholar
4.Beh, W.S., Kim, I.T., Qin, D., Xia, Y., and Whitesides, G.M., Adv. Mater. 11 (1999) p. 1038.3.0.CO;2-L>CrossRefGoogle Scholar
5.Lee, J., Sundar, V.C., Heine, J.R., Bawendi, M.G., and Jensen, K.F., Adv. Mater. 12 (2000) p. 1102.3.0.CO;2-J>CrossRefGoogle Scholar
6.Mattoussi, H., Mauro, J.F., Goodman, E., Anderson, G.P., Sundar, V.C., Mikulec, F.V., and Bawendi, M.G., J. Am. Chem. Soc. 122 (2000) p. 12142.CrossRefGoogle Scholar
7.Whitesides, G.M., Wrighton, M.S., and Parshall, G., eds., Chemistry and Materials Science: Molecular Design and Engineering (National Academy of Sciences, Washington, DC, 1986).Google Scholar
8.Whitesides, G.M., ed., Materials for Advanced Electronic Devices (American Chemical Society, Washington, DC, 1988).Google Scholar
9.Jackman, R.J., Brittain, S.T., Adams, A., Prentiss, M.G., and Whitesides, G.M., Science 280 (1998) p. 2089.CrossRefGoogle Scholar
10.Yan, L., Huck, W.T.S., and Whitesides, G.M., eds., Self-Assembled Monolayers (SAMs) and Synthesis of Planar Micro- and Nanostructures (Marcel Dekker, New York, 2000).Google Scholar
11.Isaacs, L., Chin, D.N., Bowden, N., Xia, Y., and Whitesides, G.M., eds., Self-Assembling Systems on Scales from Nanometers to Millimeters: Design and Discovery (John Wiley & Sons, New York, 1999).Google Scholar
12.Whitesides, G.M., Simanek, E.E., and Gorman, C.B., eds., Approaches to Synthesis Based on Non-Covalent Bonds (Kluwer Academic Publishers, Dordrecht, 1996).CrossRefGoogle Scholar
13.Nuzzo, R.G. and Allara, D.L., J. Am. Chem. Soc. 105 (1983) p. 4481.CrossRefGoogle Scholar
14.Allara, D.L. and Nuzzo, R.G., Langmuir 1 (1985) p. 45.CrossRefGoogle Scholar
15.Allara, D.L. and Nuzzo, R.G., Langmuir 1 (1985) p. 52.CrossRefGoogle Scholar
16.Nuzzo, R.G., Fusco, F.A., and Allara, D.L., J. Am. Chem. Soc. 109 (1987) p. 2358.CrossRefGoogle Scholar
17.Singhvi, R., Kumar, A., Lopez, G.P., Stephanopoulos, G.N., Wang, D.I.C., Whitesides, G.M., and Ingber, D.E., Science 264 (1994) p. 696.CrossRefGoogle Scholar
18.Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M., and Ingber, D.E., Science 276 (1997) p. 1425.CrossRefGoogle Scholar
19.Chapman, R.G., Otsuni, E., Takayama, S., Holmlin, R.E., Yan, L., and Whitesides, G.M., J. Am. Chem. Soc. 122 (2000) p. 8303.CrossRefGoogle Scholar
20.Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M., and Ingber, D.E.,Biotechnol. Prog. 14 (1999) p. 356.CrossRefGoogle Scholar
21.Xia, Y. and Whitesides, G.M., Angew. Chem., Int. Ed. Engl. 37 (1998) p. 550.3.0.CO;2-G>CrossRefGoogle Scholar
22.Duffy, D.C., McDonald, J.C., Schueller, O.J.A., and Whitesides, G.M., Anal. Chem. 70 (1998) p. 4974.CrossRefGoogle Scholar
23.Anderson, J.R., Chiu, D.T., Jackman, R.J., Cherniavskaya, O., McDonald, J.C., Wu, H.K., Whitesides, S.H., and Whitesides, G.M., Anal. Chem. 72 (2000) p. 3158.CrossRefGoogle Scholar
24.Kenis, P.J.A., Ismagilov, R.F., and Whitesides, G.M., Science 285 (1999) p. 83.CrossRefGoogle Scholar
25.Wu, M.H. and Whitesides, G.M., Appl. Phys. Lett. 78 (2001) p. 2273.CrossRefGoogle Scholar
26.Klimov, V.I., Mikhailovsky, A.A., Xu, S., Malko, A., Hollingworth, J.A., Leatherdale, C.A., Eisler, H.-J., and Bawendi, M.G., Science 290 (2000) p. 314.CrossRefGoogle Scholar
27.Odom, T.W., Huang, J.L., Kim, P., and Lieber, C.M., J. Phys. Chem. B 104 (2000) p. 2794.CrossRefGoogle Scholar
28.Sun, S.H., Murray, C.B., Weller, D., Folks, L., and Moser, A., Science 287 (2000) p. 1989.CrossRefGoogle Scholar
29.Evans, D.F. and Wennerstrom, H., The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet (Advances in Interfacial Engineering Series) (John Wiley & Sons, New York, 1999).Google Scholar
30.Rogers, J.A., Bao, Z., Baldwin, K., Doda-balapur, A., Crone, B., Raju, V.R., Kuck, V., Katz, H., Amundson, K., Ewing, J., and Drzaic, P., Proc. Natl. Acad. Sci. U.S.A. 98 (2001) p. 4835.CrossRefGoogle Scholar
31. Philips Research Press and Media Web site, “New plastic circuits are flexible enough to be folded in half,” research press release archive, http://www.research.philips.com/pressmedia/releases/97005e.html (accessed December 2001).Google Scholar
32.Sirringhaus, H., Kawase, T., Friend, R.H., Shimada, T., Inbasekaran, M., Wu, W., and Woo, E.P., Science 290 (2000) p. 2123.CrossRefGoogle Scholar
33.Jacobs, H.O. and Whitesides, G.M., Science 291 (2001) p. 1763.CrossRefGoogle Scholar
34.Diaz, A.F. and Fenzel-Alexander, D., Langmuir 9 (1993) p. 1009.CrossRefGoogle Scholar
35.Gibson, H.W., J. Am. Chem. Soc. 97 (1975) p. 3832.CrossRefGoogle Scholar
36.Horn, R.G. and Smith, D.T., Science 256 (1992) p. 362.CrossRefGoogle Scholar
37.Bain, C.D. and Whitesides, G.M., Science 240 (1988) p. 62.CrossRefGoogle Scholar
38.Xia, Y., Gates, B., Yin, Y., and Lu, Y., Adv. Mater. 12 (2000) p. 693.3.0.CO;2-J>CrossRefGoogle Scholar
39.Bowden, N., Terfort, A., Carbeck, J., and Whitesides, G.M., Science 276 (1997) p. 233.CrossRefGoogle Scholar
40.Bowden, N., Choi, I.S., Grzybowski, B., and Whitesides, G.M., J. Am. Chem. Soc. 121 (1999) p. 5373.CrossRefGoogle Scholar
41.Gracias, D.H., Tien, J., Breen, T.L., Hsu, C., and Whitesides, G.M., Science 289 (2000) p. 1170.CrossRefGoogle Scholar
42.Breen, T.L., Tien, J., Oliver, S.R.J., Hadzic, T., and Whitesides, G.M., Science 284 (1999) p. 948.CrossRefGoogle Scholar
43.Terfort, A., Bowden, N., and Whitesides, G.M., Nature 386 (1997) p. 162.CrossRefGoogle Scholar
44.Cohn, M.B., Boehringer, K.F., Noworolski, J.M., Singh, A., Keller, C.G., Goldberg, K.Y., and Howe, R.T., in Proc. SPIE, Vol. 3514, edited by French, P.J. and Chau, K. (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1998) p. 2.Google Scholar
45.Xia, Y.N., Rogers, J.A., Paul, K.E., and Whitesides, G.M., Chem. Rev. 99 (1999) p. 1823.CrossRefGoogle Scholar
46.Bowden, N.B., Weck, M., Choi, I.S., and Whitesides, G.M., Acc. Chem. Res. (2001) p. 231.CrossRefGoogle Scholar
47.Lu, Y., Yin, Y., and Xia, Y., Adv. Mater. 13 (2001) p. 409.Google Scholar
48.Boehringer, K.F., Fearing, R.S., and Goldberg, K.Y., in The Handbook of Industrial Robotics, edited by Nof, S. (John Wiley & Sons, New York, 1999) p. 1045.CrossRefGoogle Scholar
49.Lehn, J.M. and Ball, P., New Chem. (2000) p. 300.Google Scholar
50.Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., and Schultz, S., Phys. Rev. Lett. 84 (2000) p. 4184.CrossRefGoogle Scholar