Published online by Cambridge University Press: 31 January 2011
Acoustic emission (AE) is used as a means to anticipate the mechanical failure of critical materials and structures by detecting the release of energy caused by material rearrangement at the microlevel. Optical-fiber sensors have potential advantages over conventional tuned piezoelectric transducers and signal-processing methods for the detection of such types of ultrasonic acoustic wave events. A number of fiber Bragg grating techniques are presented, which in particular offer the potential to provide the high-speed signal processing and ability to multiplex numbers of AE sensors necessary to detect, quantify, and locate AE sources and thereby determine material properties and damage.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.