Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T03:34:51.588Z Has data issue: false hasContentIssue false

On the topological, morphological, and microstructural characterization of nanoporous metals

Published online by Cambridge University Press:  10 January 2018

Erica T. Lilleodden
Affiliation:
Helmholtz-Zentrum Geesthacht; and Hamburg University of Technology, Germany; [email protected]
Peter W. Voorhees
Affiliation:
Northwestern University, USA; [email protected]
Get access

Abstract

The structural characterization of dealloyed nanoporous metals is a fundamental and active area of research, needed for the optimization of these structures for catalytic, electrosensing, biomedical, and mechanical functions. The prediction of properties requires identifying and quantifying salient structural characteristics, while insights into the relevant mechanisms of dealloying and coarsening can be achieved through in situ observations of structural evolution. Three-dimensional structural characterization techniques have advanced such that nanoscale quantification of topology, morphology, and crystallographic parameters are achievable, yet the field is new enough that the assessment and comparison of such parameters of different nanoporous metals are just beginning. Here, we explore the state of the art in structural characterization, focusing on nanoporous gold to exemplify the challenges, the achievements, and the potential associated with establishing an appropriate set of structural parameters for this unique class of materials.

Type
Dealloyed Nanoporous Materials with Interface-Controlled Behavior
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

McCue, I., Karma, A., Erlebacher, J., MRS Bull. 43 (1), 27 (2018).CrossRefGoogle Scholar
Weissmüller, J., Sieradzki, K., MRS Bull. 43 (1), 14 (2018).CrossRefGoogle Scholar
Jin, H., Weissmüller, J., Farkas, D., MRS Bull. 43 (1), 35 (2018).CrossRefGoogle Scholar
Hill, R., J. Mech. Phys. Solids 11, 357 (1963).CrossRefGoogle Scholar
Li, R., Sieradzki, K., Phys. Rev. Lett. 68, 1168 (1992).CrossRefGoogle Scholar
Corcoran, S.G., Wiesler, D.G., Sieradzki, K., “An In Situ Small Angle Neutron Scattering Investigation of Ag0.7Au0.3 Dealloying Under Potential Control,” Mater. Res. Soc. Symp. Proc. 451, Andricacos, P.C., Corcoran, S.G., Delplancke, J.-L., Moffat, T.P., Searson, P.C., Eds. (Materials Research Society, Warrendale, PA, 1996), p. 93.Google Scholar
Parida, S., Kramer, D., Volkert, C.A., Rösner, H., Erlebacher, J., Weissmüller, J., Phys. Rev. Lett. 97, 035504 (2006).CrossRefGoogle Scholar
Volkert, C.V., Lilleodden, E.T., Kramer, D., Wiessmüller, J., Appl. Phys. Lett. 89, 061920 (2006).CrossRefGoogle Scholar
Petegem, S.V., Brandstetter, S., Maass, R., Hodge, A.M., El-Dasher, B.S., Biener, J., van Swygenhoven, H., Nano Lett. 9, 1158 (2009).CrossRefGoogle Scholar
Jin, H.-J., Kurmanaeva, L., Schmauch, J., Rösner, H., Ivanisenko, Y., Weissmüller, J., Acta Mater. 57, 2665 (2009).CrossRefGoogle Scholar
Dotzler, C.J., Ingham, B., Illy, B.N., Wallwork, K., Ryan, M.P., Toney, M.F., Adv. Funct. Mater. 21, 3938 (2011).CrossRefGoogle Scholar
Chen, Y.C.K., Chu, Y.S., Yi, J., McNulty, I., Shen, Q., Voorhees, P.W., Dunand, D.C., Appl. Phys. Lett. 96, 043122 (2010).CrossRefGoogle Scholar
Chen-Wiegart, Y.C.K., Wang, S., Chu, Y.S., Liu, W.J., McNulty, I., Voorhees, P.W., Dunand, D.C., Acta Mater. 60, 4972 (2012).CrossRefGoogle Scholar
Rösner, H., Parida, S., Kramer, D., Volkert, C.A., Weissmüller, J., Adv. Eng. Mater. 9, 535 (2007).CrossRefGoogle Scholar
Mangipudi, K.R., Radisch, V., Holzer, L., Volkert, C.A., Ultramicroscopy 163, 38 (2016).CrossRefGoogle Scholar
Hu, K., Ziehmer, M., Wang, K., Lilleodden, E.T., Philos. Mag. 96, 3322 (2016).CrossRefGoogle Scholar
Uchic, M.D., Holzer, L., Inkson, B.J., Principe, E.L., Munroe, P., MRS Bull. 32, 408 (2007).CrossRefGoogle Scholar
Burnett, T.L., Kelley, R., Winiarski, B., Contreras, L., Daly, M., Gholinia, A., Burke, M.G., Withers, P.J., Ultramicroscopy 161, 119 (2016).CrossRefGoogle Scholar
DeHoff, R., Thermodynamics in Materials Science (CRC Press, Boca Raton, FL, 2006).Google Scholar
Koenderink, J.J., Vandoorn, A.J., Image Vis. Comput. 10, 557 (1992).CrossRefGoogle Scholar
Gibbs, J.W., Mohan, K.A., Gulsoy, E.B., Shahani, A.J., Xiao, X., Bouman, C.A., De Graef, M., Voorhees, P.W., Sci. Rep. 5, 11824 (2015).CrossRefGoogle Scholar
Shahani, A.J., Gulsoy, E.B., Roussochatzakis, V.J., Gibbs, J.W., Fife, J.L., Voorhees, P.W., Acta Mater. 97, 325 (2015).CrossRefGoogle Scholar
Shahani, A.J., Xiao, X., Skinner, K., Peters, M., Voorhees, P.W., Mater. Sci. Eng. A 673, 307 (2016).CrossRefGoogle Scholar
Mendoza, R., Savin, I., Thornton, K., Voorhees, P., Nat. Mater. 3, 385 (2004).CrossRefGoogle Scholar
Mangipudi, K.R., Epler, E., Volkert, C.A., Acta Mater. 119, 115 (2016).CrossRefGoogle Scholar
Erlebacher, J., McCue, I., Acta Mater. 60, 6164 (2012).CrossRefGoogle Scholar
Ziehmer, M., Hu, K.X., Wang, K., Lilleodden, E.T., Acta Mater. 120, 24 (2016).CrossRefGoogle Scholar
Kammer, D., Voorhees, P.W., Acta Mater. 54, 1549 (2006).CrossRefGoogle Scholar
Rohrer, G.S., Saylor, D.M., El Dasher, B., Adams, B.L., Rollett, A.D., Wynblatt, P., Z. Metallkde. 95, 197 (2004).CrossRefGoogle Scholar
Barnard, A.S., Acc. Chem. Res. 45, 1688 (2012).CrossRefGoogle Scholar
Pressley, A., “The Gauss–Bonnet Theorem,” in Elementary Differential Geometry, Springer Undergraduate Mathematics Series (Springer, London, 2010).CrossRefGoogle Scholar
Erlebacher, J., Phys. Rev. Lett. 106, 225504 (2011).CrossRefGoogle Scholar
Wong, H., Miksis, M.J., Voorhees, P.W., Davis, S.H., Scr. Mater. 39, 55 (1998).CrossRefGoogle Scholar
Aagesen, L.K., Johnson, A.E., Fife, J.L., Voorhees, P.W., Miksis, M.J., Poulsen, S.O., Lauridsen, E.M., Marone, F., Stampanoni, M., Nat. Phys. 6, 796 (2010).CrossRefGoogle Scholar
Kolluri, K., Demkowicz, M.J., Acta Mater. 59, 7645 (2011).CrossRefGoogle Scholar
Sun, Y., Burger, S., Balk, T., Philos. Mag. 94, 1001 (2014).CrossRefGoogle Scholar
Lifshitz, I.M., Slyozov, V.V., J. Phys. Chem. Solids 19, 35 (1961).CrossRefGoogle Scholar
Alkemper, J., Snyder, V.A., Akaiwa, N., Voorhees, P.W., Phys. Rev. Lett. 82, 2725 (1999).CrossRefGoogle Scholar
Snyder, V.A., Alkemper, J., Voorhees, P.W., Acta Mater. 49, 699 (2001).CrossRefGoogle Scholar
Chen, M.K., Voorhees, P.W., Model. Simul. Mater. Sci. Eng. 1, 591 (1993).CrossRefGoogle Scholar
Marsh, S.P., Glicksman, M.E., Metall. Mater. Trans. A 27, 557 (1996).CrossRefGoogle Scholar
Mendoza, R., Alkemper, J., Voorhees, P.W., Z. Metallkde. 96, 155 (2005).CrossRefGoogle Scholar
Kwon, Y., Thornton, K., Voorhees, P., Europhys. Lett. 86, 46005 (2009).CrossRefGoogle Scholar
Andrews, W., Thornton, K., private communication (August 2017).Google Scholar
Mendoza, R., Thornton, K., Savin, I., Voorhees, P.W., Acta Mater. 54, 743 (2006).CrossRefGoogle Scholar
Şeker, E., Shih, W.-C., Stine, K.J., MRS Bull. 43 (1), 49 (2018).CrossRefGoogle Scholar
Gibson, L.J., Ashby, M.F., Cellular Solids: Structure and Properties, 1st ed. (Pergamon Press, Oxford, 1988).Google Scholar
Liu, R., Antoniou, A., Acta Mater. 61, 2390 (2013).CrossRefGoogle Scholar
Hodge, A.M., Biener, J., Hayes, J.R., Bythrow, P.M., Volkert, C.A., Hamza, A.V., Acta Mater. 55, 1343 (2007).CrossRefGoogle Scholar
Detsi, E., De Jong, E., Zinchenko, A., Vuković, Z., Vuković, I., Punzhin, S., Loos, K., ten Brinke, G., De Raedt, H.A., Onck, P.R., De Hosson, J.T.M., Acta Mater. 59, 7488 (2011).CrossRefGoogle Scholar
Elsner, B.A.M., Müller, S., Bargmann, S., Weissmüller, J., Acta Mater. 124, 468 (2017).CrossRefGoogle Scholar
Mameka, N., Wang, K., Markmann, J., Lilleodden, E.T., Weissmüller, J., Mater. Res. Lett. 4, 27 (2016).CrossRefGoogle Scholar
Liu, L.-Z., Ye, X.-L., Jin, H.-J., Acta Mater. 118, 77 (2016).CrossRefGoogle Scholar