Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T21:32:54.923Z Has data issue: false hasContentIssue false

Novel Methods of Nanoscale Wire Formation

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

In recent years, tremendous interest has been generated in the fabrication and characterization of nanoscale structures such as quantum dots and wires. For example, there is interest in the electronic, magnetic, mechanical, and chemical properties of materials with reduced dimensions. In the case of nanoscale semiconductors, quantum effects are expected to play an increasingly prominent role in the physics of nanostructures, and a new class of electronic and optoelectronic devices may be possible. In addition to new and interesting physics, the formation and characterization of nanoscale magnetic structures could result in higher-density storage capacity in hard disks and optical-recording media. Likewise, phonon confinement leads to a drastic reduction of thermal conductivity and can be used to improve the performance of thermoelectric devices.

In 1980, H. Sakaki predicted theoretically that quantum wires may have applications in high-performance transport devices, due to their sawtoothlike density of states (E1/2), where E is the electron energy. Since then, most quantum wires have been made by fabricating a gratinglike gate on top of a two-dimensional (2D) electron gas contained in a semiconductor heterojunction or in metal-oxide-semiconductor structures. By applying a negative gate voltage to the system, its structure can be changed from a 2D to a one-dimensional (1D) regime, where electron confinement is achieved by an electrostatic confining potential. It was not until recently that “physical” semiconductor quantum wires with the demonstrated 1D confinement by physical boundaries began to be fabricated.

Type
Novel Methods of Nanoscale Wire Formation
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Stewart, D.R., Sprinzak, D., Marcus, C.M., Duruoz, C.I., and Harris, J.S. Jr., Science 278 (1997) p. 1784.CrossRefGoogle Scholar
2.Awschalom, D.D. and DiVincenzo, D.P., Phys. Today 48 (1995) p. 43.CrossRefGoogle Scholar
3.Goldhaber-Gordon, D., Montemerlo, M.S., Love, J.C, Opiteck, G.J., and Ellenbogen, J.C., in Proc. IEEE 85 (Institute of Electronic and Electrical Engineering, New York, 1997) p. 521.Google Scholar
4.Balandin, A. and Wang, K.L., Phys. Rev. B: Condens. Matter 58 (1998) p. 1544.CrossRefGoogle Scholar
5.Warren, A.C., Antoniadis, D.A., and Smith, H.I., Phys. Rev. Lett. 56 (1986) p. 1858; W. Hansen, M. Horst, J.P. Kotthaus, U. Merkt, Ch. Sikorski, and K. Ploog, Phys. Rev. Lett. 58 (1987) p. 2586.CrossRefGoogle Scholar
6.Liu, H.L., Biegelsen, D.K., Ponce, F.A., Johnson, N.M., and Pease, R.F.W., J. Vac. Sci. Techmol., B 11 (1993) p. 2532.CrossRefGoogle Scholar
7.Nakajima, Y., Takahashi, Y., Horiguchi, S., Iwadate, K., Namatsu, H., Kurihara, K., and Tabe, M., Appl. Phys. Lett. 65 (1994) p. 2833Google ScholarGoogle Scholar
8.Jin, G., Tang, Y.S., Liu, J.L., and Wang, K.L., Appl. Phys. Lett. 74 (17) (1999) p. 2471.CrossRefGoogle Scholar
9.Dobisz, E.A., Buot, F.A., and Marrian, C.R.K., in Nanomaterials: Synthesis, Properties and Applications, edited by Edelstein, A.S. and Cammarata, R.C (Institute of Physics, Bristol, 1996) p. 497.Google Scholar
10.Lyding, J.W., Shen, T.C., Hubacek, J.S., Tucker, J.R., and Abein, G.C., Appl. Phys. Lett. 64 (1994) p. 2010.CrossRefGoogle Scholar
11.Tsau, L., Wang, D., and Wang, K.L., Appl. Phys. Lett. 64 (16) (1994) p. 2133.CrossRefGoogle Scholar
12.Germann, R., Forchel, A., Bresch, M., and Meier, H.P., J. Vac. Sci. Technol., B 7 (1989) p. 1475.CrossRefGoogle Scholar
13.Ko, K.K., Pang, S.W., Brock, T., Cole, M.W., and Casas, L.M., J. Vac. Sci. Technol., B 12 (1994) p. 3382.CrossRefGoogle Scholar
14.Jung, T.M., Prokes, S.M., and Kaplan, R., J. Vac. Sci. Techmol., A 12 (1994) p. 1838.CrossRefGoogle Scholar
15.Iijima, S., Nature 354 (1991) p. 56.CrossRefGoogle Scholar
16.Hamada, N., Sawada, S., and Oshiyama, A., Phys. Rev. Lett. 68 (1992) p. 1578.CrossRefGoogle Scholar
17.Tulchinsky, D.A., Kelley, M.H., McClelland, J.J, Gupta, R., and Celotta, R.J., J. Vac. Sci. Techmol., A 16 (1998) p. 1817.CrossRefGoogle Scholar
18.Searson, P.C., Cammarata, R.C., and Chien, C.L., J. Electron. Mater. 24 (1995) p. 955.CrossRefGoogle Scholar
19.Martin, C.R., Chem. Mater. 8 (1996) p. 1739.CrossRefGoogle Scholar
20.Ferre, R., Ounadjela, K., George, J.M., Piraux, L., and Dubois, S., Phys. Rev. B 56 (1997) p. 14066.CrossRefGoogle Scholar
21.Shingubara, S., Okino, O., Sayama, Y., Sakaue, H., and Takahagi, T., Jpn. J. Appl. Phys. 36 (1997) p. 7791.CrossRefGoogle Scholar
22.Zhang, Z.B., Ying, J.Y., and Dresselhaus, M.S., J. Mater. Res. 13 (1998) p. 1745.CrossRefGoogle Scholar
23.Liu, J.L., Cai, S.J., Jin, C.L., and Wang, K.L., Electrochem. Solid-State Lett. 1 (4) (1998) p. 188.CrossRefGoogle Scholar
24.Ishida, T., Mizutani, W., Tokumoto, H., Hokari, H., Azehara, H., and Fujihira, M., Appl. Surf. Sci. 132 (1998) p. 786.CrossRefGoogle Scholar
25.Liu, J.F., Yang, K.Z., and Lu, Z.H., J. Am. Chem. Soc. 119 (1997) p. 11061.CrossRefGoogle Scholar