Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T20:54:34.023Z Has data issue: false hasContentIssue false

Novel Materials Applications of Pulsed Laser Deposition

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The successful use of pulsed laser deposition (PLD) to fabricate thin film superconductors has generated interest in using the technique to deposit thin films of other materials. The compositional fidelity between laser target and deposited film and the ability to deposit films in reactive gas environments make the PLD process particularly well suited to the deposition of complex multicomponent materials. Cheung and Sankur recently provided an excellent review of the PLD field, including a table of over 100 elements, inorganic and organic compounds, and superlattices that have been laser evaporated. Over 75 of these materials were deposited as thin films.

The goal of this article is to provide an introduction to some of the newer applications of PLD for thin film fabrication. Four classes of materials are highlighted: ferroelectrics, bioceramics, ferrites, and tribological materials. Ferroelectric materials are structurally related to the high-temperature superconducting oxides and therefore are a direct extension of the recent superconducting oxide work. Bioceramics are dissimilar in structure and application to both ferroelectrics and superconducting oxides, but they are complex multicomponent oxides and, therefore, benefit from the use of PLD. Ferrites, also complex, multicomponent oxides, represent another exciting, but only lightly explored opportunity for PLD. In contrast, tribological materials are typically neither complex nor multicomponent. Nevertheless, interesting structures and properties have been produced by PLD. A few of the more important ones will be discussed. These different types of materials demonstrate the diversity of capabilities offered by PLD.

Type
Pulsed Laser Deposition
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cheung, J.T. and Sankur, H., CRC Critical Reviews in Solid State and Materials Sciences 15 (1988) p. 63109.Google Scholar
2. Haertling, G.H., in Ceramic Materials for Electronics, edited by Buchanan, R. (Marcel Dekker, New York, 1991) p. 129205.Google Scholar
3. Francombe, M.H., Thin Solid Films 13 (1972) p. 413433.Google Scholar
4. Haertling, G.H., J. Vac. Sci. Technol. A 9 (1991) p. 414420.Google Scholar
5. Roy, R.A., Etzold, K.F., and Cuomo, J.J., in Ferroelectric Thin Films, edited by Myers, E.R. and Kingon, A.I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990) p. 141152.Google Scholar
6. Third Int. Symp. Integrated Ferroelectrics, Ferroelectrics (to be published).Google Scholar
7. Ferroelectric Thin Films, edited by Myers, E.R. and Kingon, A.I., (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990).Google Scholar
8. Second Int. Symp. Integrated Ferroelectrics, Ferroelectrics 116 (1991) p. 1230.Google Scholar
9. Seventh Int. Conf. Ferroelectrics, Ferroelectrics 104–109 (1990).Google Scholar
10. Scott, J.F. and de Araujo, C.A. Paz, Science 246 (1989) p. 14001405.Google Scholar
11. Evans, J.E. and Womack, R., IEEE J. Solid State Circuits 23 (1989) p. 1171.Google Scholar
12. Wu, S-Y., IEEE Trans. Electron Devices ED-21 (1974) p. 499504.Google Scholar
13. Bondurant, D. and Gnadinger, F., IEEE Spectrum July (1989) p. 3033.Google Scholar
14. Messenger, G.C. and Coppage, F.N., IEEE Trans. Nucl. Sci. 35 (1988) p. 14611466.Google Scholar
15. Schwank, J.R., Nasby, R.D., Miller, S.L., Rodgers, M.S., and Dressendorfer, P.V., IEEE Trans. Nucl. Sci. 37 (1990) p. 17031712.Google Scholar
16. Larsen, P.K., Kampschoer, G.L.M., Ulenaers, M.J.E., Spierings, G.A.C.M., and Cuppens, R., Appl. Phys. Lett. 59 (1991) p. 611613.Google Scholar
17. Daughton, J.M., Ferroelectrics 116 (1991) p. 175194.Google Scholar
18. Sayer, M. and Sreenivas, K., Science 247 (1990) p. 10561060.Google Scholar
19. Francombe, M.H. and Krishnaswamy, S.V., J. Vac. Sci. Technol. A 8 (1990) p. 13821390.Google Scholar
20. Schwarz, H. and Tourtellotte, H.A., J. Vac. Sci. Technol. 6 (1969) p. 373378.Google Scholar
21. Davis, G.M. and Gower, M.C., Appl. Phys. Lett. 55 (1989) p. 112114.Google Scholar
22. Gibson, U.J., Ruffner, J.A., McNally, J.J., and Peterson, G., in Laser Ablation for Materials Synthesis, edited by Paine, D.C. and Bravman, J.C. (Mater. Res. Soc. Symp. Proc. 191, Pittsburgh, PA, 1990) p. 1924.Google Scholar
23. Norton, M.G. and Carter, C.B., J. Mater. Res. 5 (1990) p. 27622765.Google Scholar
24. Norton, M.G., English, G.R., and Carter, C.B., in Ferroelectric Thin Films, edited by Myers, E.R. and Kingon, A.I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990) p. 237241.Google Scholar
25. Ogale, S.B., Kanetkar, S.M., Chaudhari, S.M., Godbole, V.P., Koinkar, V.N., Joshi, S., Nawathey, R., Vispute, R.D., Date, S.K., and Moghe, A.R., Ferroelectrics 102 (1990) p. 8590.Google Scholar
26. Norton, M.G., Scarfone, C., Li, J., Carter, C.B., and Mayer, J.W, J. Mater. Res. 6 (1991) p. 20222025.Google Scholar
27. Scarfone, C., Norton, M.G., Carter, C.B., Li, J., and Mayer, J.W., in Surface Chemistry and Beam-Solid Interactions, edited by Atwater, H.A., Houle, F.A., and Lowndes, D.H. (Mater. Res. Soc. Symp. Proc. 201, Pittsburgh, PA, 1991) p. 183188.Google Scholar
28. Ramesh, R., Luther, K., Wilkens, B., Hart, D.L., Wang, E., and Tarascon, J.M., Appl. Phys. Lett. 57 (1990) p. 15051507.Google Scholar
29. Buhay, H., Sinharoy, S., Kasner, W.H., and Francombe, M.H., Appl. Phys. Lett. 58 (1991) p. 14701472.Google Scholar
30. Yilmaz, S., Venkatesan, T., and Gerhard-Multhaupt, R., Appl. Phys. Lett. 58 (1991) p. 24792481.Google Scholar
31. Chiang, C.K., Cook, L.P., Schenck, P.K., Brody, P.S., and Benedetto, J.M., in Ferroelectric Thin Films, edited by Myers, E.R. and Kingon, A.I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990) p. 133137.Google Scholar
32. Chrisey, D.B., Horwitz, J.S., and Grabowski, K.S., in Laser Ablation for Materials Synthesis, edited by Paine, D.C. and Bravman, J.C. (Mater. Res. Soc. Symp. Proc. 191, Pittsburgh, PA, 1990) p. 2530.Google Scholar
33. Morimoto, A., Otsubo, S., Shimizu, T., Minamikawa, T., Yonezawa, Y., Kidoh, H., and Ogawa, T., in Laser Ablation for Materials Synthesis, edited by Paine, D.C. and Bravman, J.C. (Mater. Res. Soc. Symp. Proc. 191, Pittsburgh, PA, 1990) p. 3136.Google Scholar
34. Otsubo, S., Maeda, T., Minamikawa, T., Yonezawa, Y., Morimoto, A., and Shimizu, T., Jpn. J. Appl. Phys. 29 (1990) p. L133L136.Google Scholar
35. Saenger, K.L., Roy, R.A., Etzold, K.E, and Cuomo, J.J., in Ferroelectric Thin Films, edited by Myers, E.R. and Kingon, A.I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990) p. 115120.Google Scholar
36. Schenck, P.K., Cook, L.P., Zhao, J., Hastie, J.W., Farabaugh, E.N., Chiang, C-K., Vaudin, M.D., and Brody, P.S., in Beam-Solid Interactions: Physical Phenomena, edited by Knapp, J.A., Børgesen, P. and Zuhr, R.A. (Mater. Res. Soc. Symp. Proc. 157, Pittsburgh, PA, 1990).Google Scholar
37. Grabowski, K.S., Horwitz, J.S., and Chrisey, D.B., Ferroelectrics 116 (1991) p. 1933.Google Scholar
38. Horwitz, J.S., Grabowski, K.S., Chrisey, D.B., and Leuchtner, R.E., Appl. Phys. Lett. 59 (1991) p. 15651567.Google Scholar
39. Kidoh, H., Ogawa, T., Morimoto, A., and Shimizu, T., Appl. Phys. Lett. 58 (1991) p. 29102912.Google Scholar
40. Roy, D., Krupanidhi, S.B., and Dougherty, J.P., J. Appl. Phys. 69 (1991) p. 79307932.Google Scholar
41. Tabata, H., Kawai, T., Kawai, S., Murata, O., Fujioka, J., and Minakata, S-I., Appl. Phys. Lett. 59 (1991) p. 23542356.Google Scholar
42. Leuchtner, R.E., Grabowski, K.S., Chrisey, D.B., and Horwitz, J.S., Ferroelectrics (submitted).Google Scholar
43. Leuchtner, R.E., Grabowski, K.S., Chrisey, D.B., and Horwitz, J.S., Appl. Phys. Lett. (submitted).Google Scholar
44. Petersen, G.A., Zou, L.C., Van Buren, W.M., Boyer, L.L., and McNeil, J.R., in Ferroelectric Thin Films, edited by Myers, E.R. and Kingon, A.I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990) p. 127132.Google Scholar
45. Ramesh, R., Inam, A., Chan, W.K., Wilkens, B., Myers, K., Remschnig, K., Hart, K.L., and Tarascon, J.M., Science 252 (1991) p. 944946.Google Scholar
46. Etzold, K.E., Roy, R.A., Saenger, K.L., and Cuomo, J.J., in Ferroelectric Thin Films, edited by Myers, E.R. and Kingon, A.I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990) p. 297302.Google Scholar
47. Hulbert, S.F., in Use of Ceramics in Surgical Implants, edited by Hulbert, S.F. and Young, F.A. (Gordon and Breach Science Publishers, New York, 1969) p. 1.Google Scholar
48. Solnick-Legg, H. and Legg, K., MRS Bulletin 14 (4) (1989) p. 27.Google Scholar
49. Ducheyne, P., Raemdonck, W.V., Heughebaert, J.C., and Hueghebaert, M., Biomater. 7 (1986) p. 97.Google Scholar
50. Cook, S.D., Kay, J.F., Thomas, K.A., Anderson, R.C., Reynolds, M.C., and Jarcho, J., J. Dental Res. 65 (1986) p. 222.Google Scholar
51. Ruckenstein, E., Gourisanker, S., and Baier, R.E., J. Colloid and Interface Sci. 63 (1983) p. 245.Google Scholar
52. Barthell, B.L., Archuleta, T.A., and Kossowsky, R., in Biomedical Materials and Devices, edited by Hanker, J.S. and Giammara, B.L. (Mater. Res. Soc. Symp. Proc. 110, Pittsburgh, PA, 1989) p. 709.Google Scholar
53. Barthell, B.L., Stevenson, J.R., Solnick-Legg, H., and Legg, K., p. 715.Google Scholar
54. Cotell, C.M., Chrisey, D.B., Grabowski, K.S., Sprague, J.A., and Gossett, C.R., J. Appl. Biomater. (in press).Google Scholar
55. Bull, S.J. and Rickerby, D.S., in Surface Modification Technologies III, edited by Sudarshan, T.S. and Bhat, D.G. (The Minerals, Metals and Materials Society, Warrendale, PA, 1990).Google Scholar
56. Hench, L.L. and Wilson, J., MRS Bulletin 16 (9) (1991) p. 62.Google Scholar
57. Viswanathan, B., in Ferrite Materials: Science and Technology, edited by Viswanathan, B. and Murthy, V.R.K. (Springer-Verlag, Berlin, 1990) p. 1.Google Scholar
58. Ramo, S., Whinnery, J.R., and Van Duzar, T., Fields and Waves in Communication Electronics, (John Wiley & Sons, 1984) p. 715.Google Scholar
59. Bhattacharya, D., Maiti, C.K., and Chakrabarti, N.B., in Ferrite Materials: Science and Technology, edited by Viswanathan, B. and Murthy, V.R.K. (Springer-Verlag, Berlin, 1990) p. 147.Google Scholar
60. Tarn, A.C., Leung, W.P., and Krajnovich, D., J. Appl. Phys. 69 (1991) p. 2072.Google Scholar
61. Lu, Y.F., Takai, M., Nagamoto, S., Minamisono, T., and Namba, S., Jpn. J. Appl. Phys. 28 (1989) p. 2151.Google Scholar
62. Yung, E.K., Hussey, B.W., Gupta, A., and Romankiw, L.T., J. Electrochem. Soc. 136 (1989) p. 665.Google Scholar
63. Ogale, S.B. and Nawathey, R., Appl. Phys. Lett. 65 (1989) p. 1367.Google Scholar
64. Chrisey, D.B., Williams, C.M., Lubitz, P., Cotell, C.M., Grabowski, K.S., and Carosella, C.A. (to be submitted).Google Scholar
65. Carosella, C.A., Chrisey, D.B., Lubitz, P., Horwitz, J.S., Dorsey, P., Seed, R., and Vittoria, C., J. Appl. Phys. (submitted).Google Scholar
66. Zabinski, J.S., Donley, M.S., John, P.J., Dyhouse, V.J., Safriet, A.J., and McDevitt, N.T., in Surface Chemistry and Beam Solid Interactions, edited by Atwater, H.A., Houle, F.A., and Lowndes, D.H. (Mater. Res. Soc. Symp. Proc. 201, Pittsburgh, PA, 1991) p. 195.Google Scholar
67. Zabinski, J.S., Donley, M.S., Dyhouse, V.J., and McDevitt, N.T., Surf. Coat. Technol. 49 (1991).Google Scholar
68. Angus, J.C. and Hayman, C.C., Science 241 (1988) p. 913921.Google Scholar
69. Marquardt, C.L., Williams, R.T., and Nagel, D.J., in Plasma Synthesis and Etching of Electronic Materials, edited by Chang, R.P.H. and Abeles, B. (Mater. Res. Soc. Symp. Proc. 38, Pittsburgh, PA, 1985) p. 325335.Google Scholar
70. Collins, C.B., Davanloo, F., Juengerman, E.M., Jander, D.R., and Lee, T.J., Surf. Coat. Technol. 47 (1991) p. 244251.Google Scholar
71. Davanloo, F., Juengerman, E.M., Jander, D.R., Lee, T.J., and Collins, C.B., J. Mater. Res. 5 (1990) p. 23982404.Google Scholar
72. Davanloo, F., Juengerman, E.M., Jander, D.R., Lee, T.J., and Collins, C.B., J. Appl. Phys. 67 (1990) p. 20812087.Google Scholar
73. Wagal, S.S., Surf. Coat. Technol. 47 (1991) p. 257262.Google Scholar
74. Krishnaswamy, J., Rengan, A., Narayan, J., Vedam, K., and McHargue, C.J., Appl. Phys. Lett. 54 (1989) p. 24552457.Google Scholar
75. Harshavardhan, K.S., Yalamanchi, R.S., and Rao, L.K., Appl. Phys. Lett. 55 (1989) p. 351353.Google Scholar
76. Doll, G.L., Sell, J.A., Taylor, C.A. II, and Clarke, R., Phys. Rev. B 43 (1991) p. 6816.Google Scholar
77. Kanetkar, S.M., Sharan, S., Tiwari, P., Matera, J., and Narayan, J., in Surface Chemistry and Beam Solid Interactions, edited by Atwater, H.A., Houle, F.A., and Lowndes, D.H. (Mater. Res. Soc. Symp. Proc. 201, Pittsburgh, PA, 1991) p. 189.Google Scholar
78. Clarke, R., Taylor, C.A. II, Doll, G.L., and Perry, A.T., Surf. Coat. Technol. (submitted).Google Scholar