Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T11:30:23.632Z Has data issue: false hasContentIssue false

Novel Materials and Applications of Electronic Noses and Tongues

Published online by Cambridge University Press:  31 January 2011

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This introductory article describes the content of the October 2004 issue of MRS Bulletin focusing on novel materials and applications of electronic noses and tongues.The articles in this issue review the state of the art in materials, devices, and data processing algorithms used in electronic olfaction and taste systems. The most common gas- and liquid-phase analyte detection tools are presented and compared with traditional chemical analysis instrumentation such as gas chromatography/mass spectroscopy systems. Metal oxides, polymer/polymer composites, and dyes are covered in these articles as key sensing materials. Resistive, optical, electrochemical, and other types of electronic nose and tongue systems are reviewed, and their use in diverse applications, including environmental and food-quality monitoring and medical diagnostics, is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

References

1Gardner, J.W. and Bartlett, P.N., Electronic Noses: Principles and Applications (Oxford University Press, NY, 1999).CrossRefGoogle Scholar
2Kress-Rogers, E., Handbook of Biosensors and Electronic Noses: Medicine, Food, and the Environment (CRC Press, Boca Raton, FL, 1997).Google Scholar
3NOSE II—2nd Network on Artificial Olfactory Sensing Home Page, http://www.nosenetwork. org (accessed September 2004).Google Scholar
4Phillips, M., in Disease Markers in Exhaled Breath, edited by Marczin, N., Kharitonov, S.A., Yacoub, M.H., and Barnes, P.J. (Marcel Dekker, New York, 2002) p. 219.Google Scholar
5Thaler, E.R., Bruney, F.C., Kennedy, D.W., and Hanson, C.W., Arc h. Otorynchology: Head & Neck Surgery 126 (January 2000) p. 71.Google Scholar
6“eNose Technology,” Osmetech Home Page, http://www.osmetech.co.uk/enose.htm (accessed September 2004).Google Scholar
7Novak, J.P., Snow, E.S., Houser, E.J., Park, D., Stepnowski, J.L., and Gill, R.A., Appl. Phys. Lett. 83 (2003) p. 4026.CrossRefGoogle Scholar
8Comini, E., Guidi, V., Malagu, C., Martnelli, G., Pan, Z., Sberveglieri, G., and Wang, Z.L., J. Phys. Chem. B 108 (2004) p. 1882.CrossRefGoogle Scholar
9Wan, Q., Li, Q.H., Chen, Y., Wang, T.H., He, X.L., Li, J.P., and Lin, C.L., Appl. Phys. Lett. 84 (2004) p. 3654.CrossRefGoogle Scholar
10Sawicka, K.M., Prasad, A.K., Gadia, S., and Gouma, P.I., in Proc. 2nd AIST Int. Workshop on Chemical Sensors (Advanced Manufacturing Research Institute, Nagoya, Japan, 2004) p. 41.Google Scholar
11Moseley, P.T. and Crocker, A.J., Sensor Materials (Institute of Physics, Bristol, 1996).Google Scholar
12Gouma, P.I., Rev. Adv. Mater. Sci. 5 (2003) p. 123.Google Scholar
13Prasad, A.K., Kubinski, D., and Gouma, P.I., Sens. Actuators, B 9 (2003) p. 25.CrossRefGoogle Scholar
14Gouma, P., Comini, E., and Sberveglieri, G., in Proc. SPIE, Vol. 5275, edited by Nicolau, D.V., Muller, U.R., and Dell, J.M. (SPIE—The International Society for Optical Engineering, Bellingham, WA, 2004) p. 68.Google Scholar
15Dutta, P.K., Ginwalla, A., Hogg, B., Patton, B.R., Chiewroth, B., Liang, Z., Gouma, P., Mills, M., and Akbar, S., J. Phys. Chem. B 103 (1999) p. 4412.CrossRefGoogle Scholar
16Semancik, S. and Cavicci, R.E., Appl. Surf. Sci. 70 (1993) p. 337.CrossRefGoogle Scholar
17Gouma, P.I., Dutta, P.K., and Mills, M.J., Nanostruct. Mater. 11 (1999) p. 1231.CrossRefGoogle Scholar
18Sisk, B.C. and Lewis, N.S., Sens. Actuators, B-Chem. 96 (2003) p. 268.CrossRefGoogle Scholar
19Mather, B.A., The Scientist (September 2002) p. 38.Google Scholar
20Stetter, R., Strathmann, S., McEntegart, C., , DeCastro, and Penrose, W.R., Sens. Actuators, B-Chem. 69 (2000) p. 410.CrossRefGoogle Scholar
21Fisher-Wilson, J., The Scientist (Dec. 10, 2001) p. 22.Google Scholar
22Shevade, A.V., Ryan, M.A., Homer, M.L., Manfreda, A.M., Zhou, H., and Manatt, K.S., Sens. Actuators, B-Chem. 93 (2003) p. 84.CrossRefGoogle Scholar
23Di, C. Natale, Macagnano, A., Martinelli, E., Paolesse, R., D'Arcangelo, G., Roscioni, C., Finazzi-Agro, A., and D'Amico, A., Biosens. Bioelectron. 18 (2003) p. 1209.Google Scholar
24Ballantine, D.S., White, R.M., Martin, S.J., Ricco, A.J., Zellers, E.T., Frye, G.C., and Wohltjen, H., Acoustic Wave Sensors (Academic Press, San Diego, CA, 1997).CrossRefGoogle Scholar
25Lang, H.P., Hegner, M., Meyer, E., and Gerber, Ch., Nanotechnol. 13 (2002) p. R 29.CrossRefGoogle Scholar
26Brunick, J., Natale, C. Di, Bungaro, F., Davide, F., D'Amico, A., Paolesse, R., Boschi, T., Faccio, M., and Ferri, G., Anal. Chim. Acta 325 (1996) p. 53.CrossRefGoogle Scholar
27Edelmann, A. and Lendl, B., J. Am. Chem. Soc. 124 (2002) p. 14741.CrossRefGoogle Scholar
28Schreuder-Gibson, H.L., Truong, Q., Walker, J.E., Owens, J.R., Wander, J.D., and Jones, W.E. Jr., MRS Bull. 28 (2003) p. 574.CrossRefGoogle Scholar