Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T20:32:51.323Z Has data issue: false hasContentIssue false

Novel contact structures for high mobility channel materials

Published online by Cambridge University Press:  18 February 2011

Jenny Hu
Affiliation:
Stanford University; [email protected]
H.-S. Philip Wong
Affiliation:
Stanford University
Krishna Saraswat
Affiliation:
Stanford University; [email protected]
Get access

Abstract

A novel contact technique to reduce the effective Schottky barrier height on Ge and III–V high mobility semiconductors is described. Single metals are used in combination with an ultrathin dielectric to tune the metal/semiconductor barrier height toward zero by shifting or suppressing the strong Fermi-level pinning. Barrier height reduction in the metal-insulator-semiconductor (MIS) contact structure is verified through direct measurements and deduced from increased diode current and reduced contact resistance. Current demonstrations of the MIS contact have barriers as low as 0.05 eV for Er/SiN/n-Ge and 0.18 eV for Al/Al2O3/n-GaAs. The underlying physics is discussed along with the dependence of the minimum achievable contact resistance and barrier height on the metal, dielectric material, dielectric thickness, and substrate doping. For Ge, the MIS contact provides a possible solution to the low n-type Ge dopant solubility problem and allows for the fabrication of Schottky barrier field-effect transistors. For III–V semiconductors, the MIS contact allows for the use of a non-alloyed contact that is crucial for the scalability of III–V metal oxide semiconductor field-effect transistors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kuzum, D., Krishnamohan, T., Nainani, A., Sun, Y., Pianetta, P.A., Wong, H.S-.P., Saraswat, K.C., IEDM Tech. Digest 453456 (2009).Google Scholar
2.Nakakita, Y., Nakane, R., Sasada, T., Matsubara, H., Takenaka, M., Takagi, S., IEDM Tech. Digest 877880 (2008).Google Scholar
3.Radosavljevic, M., Chu-Kung, B., Corcoran, S., Dewey, G., Hudait, M.K., Fastenau, J.M., Kavalieros, J., Liu, W.K., Lubyshev, D., Metz, M., Millard, K., Mukherjee, N., Rachmady, W., Shah, U., Chau, R., IEDM Tech. Digest 319322 (2009).Google Scholar
4.Wu, Y.Q., Xu, M., Wang, R.S., Koybasi, O., Ye, P.D., IEDM Tech. Digest 323326 (2009).Google Scholar
5.Kim, D.H. del Alamo, J.A., IEDM Tech. Digest 719722 (2008).Google Scholar
6.Dimoulas, A., Tsipas, P., Sotiropoulos, A., Evangelou, E.K., Appl. Phys. Lett. 89, 252110 (2006).CrossRefGoogle Scholar
7.Ikeda, K., Yamashita, Y., Sugiyama, N., Taoka, N., Takagi, S., Appl. Phys. Lett. 88, 152115 (2006).CrossRefGoogle Scholar
8.Myburg, G., Auret, F.D., Meyer, W.E., Louw, C.W., van Staden, M.J., Thin Solid Films 325, 181 (1998).CrossRefGoogle Scholar
9.Waldron, N., Kim, D.H., del Alamo, J.A., IEDM Tech. Digest 633636 (2007).Google Scholar
10.Singisetti, U., Wistey, M.A., Zimmerman, J.D., Thibeault, B.J., Rodwell, M.J.W., Gossard, A.C., Bank, S.R., Appl. Phys. Lett. 93, 183502 (2008).CrossRefGoogle Scholar
11.Yasuda, T., Ishii, H., Urabe, Y., Itatani, T., Miyata, N., Yamada, H., Fukuhara, N., Hata, M., Yokoyama, M., Takenaka, M., Takagi, S., 40th IEEE Semiconductor Interface Specialists Conference (SISC), 1415 (2009).Google Scholar
12.Wong, H.-S.P., Wei, L., Deng, J., International Conference on Solid State and Integrated Circuit Technology (ICSICT 2008), Beijing, China, October 20–23, 21–24 (2008).Google Scholar
13.Connelly, D., Faulkner, C., Grupp, D.E., Harris, J., IEEE Trans. on Nanotech. 3, 98104 (2004).CrossRefGoogle Scholar
14.Schottky, W., Phys. Z 41, 570 (1940).Google Scholar
15.Heine, V., Physical Review, 138, A1689 (1965).CrossRefGoogle Scholar
16.Tersoff, J., Phys. Rev. Lett. 52, 465 (1984).CrossRefGoogle Scholar
17.Yeo, Y., King, T.J., Hu, C., J. Appl. Phys. 92, 7266 (2002).CrossRefGoogle Scholar
18.Mönch, W., Phys. Rev. Lett. 58, 1260 (1987).CrossRefGoogle Scholar
19.Tung, R., Phys. Rev. B. 64, 205310 (2001).CrossRefGoogle Scholar
20.Pethe, A., Ph.D. dissertation, Stanford University (2007).Google Scholar
21.Coss, B.E., Loh, W.Y., Oh, J., Smith, G., Smith, C., Adhikari, H., Sassman, B., Parthasarathy, S., Barnett, J., Majhi, P., Wallace, R.M., Kim, J., Jammy, R., IEEE Symp. VLSI Tech. 104105 (2009).Google Scholar
22.Lieten, R.R., Degroote, S., Kuijk, M., Borghs, G., Appl. Phys. Lett. 92, 022106 (2008).CrossRefGoogle Scholar
23.Nishimura, T., Kita, K., Toriumi, A., App. Phys. Express 051406 (2008).CrossRefGoogle Scholar
24.Kobayashi, M., Kinoshita, A., Saraswat, K., Wong, H.-S.P., IEEE Symp. VLSI Tech. 5455 (2008).Google Scholar
25.Hu, J., Guan, X., Saraswat, K.C., Wong, H.-S.P., IEEE International Symposium on VLSI Technology, Systems and Applications (VLSI – TSA), 123 (2009).Google Scholar
26.Hu, J., Saraswat, K.C., Wong, H.-S.P., J. Appl. Phys. 107, 063712 (2010).CrossRefGoogle Scholar
27.Chen, P.T., Sun, Y., Nishi, Y., J. Appl. Phys. 103, 034106 (2008).CrossRefGoogle Scholar
28.Hinkle, C.L., Sonnet, A.M., Vogel, E.M., McDonnell, S., Hughes, G.J., Milojevic, M., Lee, B., Aguirre-Tostado, F.S., Choi, K.J., Kim, H.C., Kim, J., Wallace, R.M., Appl. Phys. Lett. 92, 071901 (2008).CrossRefGoogle Scholar