Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T13:30:18.181Z Has data issue: false hasContentIssue false

Nonlinear Frequency Conversion Performance of AgGaSe2, ZnGeP2, and CdGeAs2

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

In recent years, chalcopyrites have distinguished themselves as the nonlinear optical materials of choice for mid- to far-infrared (ir) laser applications. In particular, AgGaSe2, ZnGeP2, and CdGeAs2 have demonstrated the highest conversion efficiencies and output powers in the wavelength range beyond 4 μm. The superior performance of these crystals arises from their high nonlinear optical coefficients (39 pm/V, 75 pm/V, and 236 pm/V, respectively), their relatively large birefringence (sufficient for phase matching), and advances in crystal growth and processing that have improved transparency and eliminated cracking.

The two most direct approaches to generating laser output in the mid-ir (in particular the 3–5-μm atmospheric transmission window) are (1) shifting the output of a solid-state laser to longer wavelengths via optical parametric oscillation (OPO), or (2) doubling the frequency of a CO2 laser (9–11 μm) via second-harmonic generation (SHG). The OPO approach offers the advantage of tunability combined with potentially more compact and efficient solid-state lasers, whereas the SHG approach benefits from the greater maturity of high-power CO2 laser technology. A third process, difference-frequency generation (DFG), is also a 3-wave interaction similar to OPO that can be used to mix two photons (from two lasers or from an OPO) to produce longer wavelength photons (corresponding to the small difference frequency) over a large spectral range. The optimum chalcopyrite crystal (AgGaSe2, ZnGeP2, or CdGeAs2) for a given approach depends on a complex combination of material parameters described in the sections that follow.

Type
Emergence of Chalcopyrites as Nonlinear Optical Materials
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Boyd, G.D., Kasper, H.M., McFee, J.H., and Storz, F.G., IEEE J. Quantum Electron. 8 (1972) p. 900.CrossRefGoogle Scholar
2.Route, R.K., Feigelson, R.S., Raymakers, R.J., and Choy, M.M., J. Cryst. Growth 33 (1976) p. 239.CrossRefGoogle Scholar
3.Eckardt, R.C., Fan, Y.X., Byer, R.L., Marquardt, C.L., Storm, M.E., and Esterowitz, L., Appl. Phys. Lett. 49 (1986) p. 608.CrossRefGoogle Scholar
4.Schepler, K.L., Turner, M.D., and Budni, P.A., in OSA Proc. on Advanced Solid-State Lasers, vol. 10, edited by Dubé, G. and Chase, L. (Optical Society of America, Washington, DC, 1991) p. 325.Google Scholar
5.Budni, P.A., Knights, M.G., Chicklis, E.P., and Schepler, K.L., Opt. Lett. 18 (1993) p. 1068.CrossRefGoogle Scholar
6.Marquardt, C.L., Cooper, D.G., Budni, P.A., Knights, M.G., Schepler, K.L., DeDomenico, R., and Catella, G.C., Appl. Opt. 33 (15) (1994) p. 3192.CrossRefGoogle Scholar
8.Beasley, J.D., Appl. Opt. 33 (1994) p. 1000.CrossRefGoogle Scholar
9.Barnes, N.P. and Murray, K.E., in Tunable Solid-State Lasers, vol. 5, edited by Shand, M.L. and Jenssen, H.P. (Optical Society of America, Washington, DC, 1989) p. 319.Google Scholar
10.Komine, H., Fukumoto, J.M., Long, W.H. Jr., and Stappaerts, E.A., IEEE J. Quantum Electron. 1 (1) (1995) p. 44.CrossRefGoogle Scholar
11.Chuang, T., Burnham, R., and Jones, R.B., in Trends in Optics and Photonics, vol. 10, edited by Pollock, C.R. and Bosenberg, W.R. (Optical Society of America, Washington, DC, 1997) p. 262.Google Scholar
12.Chandra, S., Allik, T.H., Hutchinson, J.A., Utano, R., and Catella, G., in Trends in Optics and Photonics, vol. 10, edited by Pollock, C.R. and Bosenberg, W.R. (Optical Society of America, Washington, DC, 1997) p. 270.Google Scholar
13.Ruffing, B., Nebel, A., and Wallenstein, R., in Conf. on Lasers and Electro-Optics, 1997 OSA Technical Digest Ser., vol. 11 (Optical Society of America, Washington, DC, 1997) p. 199.Google Scholar
14.Petrov, K.P., Curl, R.F., Tittel, F.K., and Goldberg, L., Opt. Lett. 21 (18) (1996) p. 1451.CrossRefGoogle Scholar
15.Utano, R. and Ferry, M.J., in Trends in Optics and Photonics, vol. 10, edited by Pollock, C.R. and Bosenberg, W.R. (Optical Society of America, Washington, DC, 1997) p. 267.Google Scholar
16.Vodopyanov, K.L., Voevodin, V.G., Gribenyukov, A.I., and Kulevskii, L.A., Sov. J. Quantum Electron. 17 (1987) p. 1159.CrossRefGoogle Scholar
17.Budni, P.A., Ezzo, K., Schunemann, P.G., Minnigh, S., McCarthy, J.C., and Pollak, T.M., in OSA Proc. on Advanced Solid-State Lasers, vol. 10, edited by Dubé, G. and Chase, L. (Optical Society of America, Washington, DC, 1991) p. 335.Google Scholar
18.Budni, P.A., Schunemann, P.G., Knights, M.G., Pollak, T.M., and Chicklis, E.P., in OSA Proc. on Advanced Solid-State Lasers, vol. 13, edited by Chase, L. and Pinto, A. (Optical Society of America, Washington, DC, 1992) p. 380.Google Scholar
19.Marquardt, C.L., Whitney, W.T., Feldman, B.J., Catella, G.C., Burlage, D.S., Knights, M.G., Budni, P.A., and Schunemann, P.G., in Conf. on Lasers and Electro-Optics, 1994 OSA Technical Digest Ser., vol. 12 (Optical Society of America, Washington DC, 1994) p. 201.Google Scholar
20.Knights, M.G., Budni, P.A., Schunemann, P.G., Pollak, T.M., and Chicklis, E.P., in Advanced Solid-State Lasers, Technical Digest, 1994 (Optical Society of America, Washington, DC 1994) p. 259.Google Scholar
21.Pomeranz, L.A., Budni, P.A., Schunemann, P.G., Pollak, T.M., Ketteridge, P.A., Lee, I., and Chicklis, E.P., in Trends in Optics and Photonics, vol. 10, edited by Pollock, C.R. and Bosenberg, W.R. (Optical Society of America, Washington, DC, 1997) p. 259.Google Scholar
22.Budni, P.A., Pomeranz, L.A., Lemons, M.L., Schunemann, P.G., Pollak, T.M., and Chicklis, E.P., in Advanced Solid-State Lasers, Technical Digest (Optical Society of America, Washington DC, 1998) p. 90.Google Scholar
23.Ketteridge, P.A., Budni, P.A., Schunemann, P.G., Lemons, M.L., Pollak, T.M., Chicklis, E.P., and Allik, T.H., in Advanced Solid-State Lasers, Technical Digest (Optical Society of America, Washington DC, 1998) p. 352.Google Scholar
24.Allik, T.H., Chandra, S., Rines, D.M., Schunemann, P.G., Hutchinson, J.A., and Utano, R., Opt. Lett. 22 (1997) p. 597.CrossRefGoogle Scholar
25.Allik, T.H., Chandra, S., Schunemann, P.G., Ketteridge, P.A., Lee, I., and Hutchinson, J.A., in Advanced Solid-State Lasers, Technical Digest (Optical Society of America, Washington DC, 1998) p. 105.Google Scholar
26.Bhar, G.C., Samanta, L.K., Ghosh, D.K., and Das, S., Sov. J. Quantum. Electron. 17 (1987) p. 860.CrossRefGoogle Scholar
27.Kato, K., Appl. Opt. 36 (1997) p. 2506.CrossRefGoogle Scholar
28.Vodopyanov, K.L. and Schunemann, P.G. (unpublished).Google Scholar
29.Eckardt, R.C., Fan, Y.X., Byer, R.L., Route, R.K., Feigelson, R.S., and van der Laan, J., Appl. Phys. Lett. 47 (1985) p. 786.CrossRefGoogle Scholar
30.Eckardt, R.C., Byer, R.L., Newman, L.A., and Kennedy, J., in Conf. on Lasers and Electro-Optics, 1988 OSA Technical Digest Ser., vol. 7 (Optical Society of America, Washington DC, 1988) p. 228.Google Scholar
31.Newman, L. (private communication).Google Scholar
32.Mason, P.D., Jackson, D.J., and Gorton, E.K., Opt. Commun. 110 (1994) p. 163.CrossRefGoogle Scholar
33.Hobgood, H.M., Henningsen, T., Thomas, R.N., Hopkins, R.H., Ohmer, M.C., Mitchel, W.C., Fischer, D.W., Hegde, S.M., and Hopkins, F.K., J. Appl. Phys. 73 (1993) p. 4030.CrossRefGoogle Scholar
34.Andreev, Yu.M., Baranov, V.Yu., Voevodin, V.G., Geiko, P.P., Gribenyukov, A.I., Izyumov, S.V., Kozochkin, S.M., Pismennyl, V.D., Satov, Yu.A., and Streltsov, A.P., Sov. J. Quantum Electron. 17 (1987) p. 1021.Google Scholar
35.Schunemann, P.G., in Conf. on Lasers and Electro-Optics, 1996 OSA Technical Digest Ser., vol. 9 (Optical Society of America, Washington, DC, 1996) p. 230.Google Scholar
36.Iseler, G.W., Kildal, H., and Menyuk, N., J. Electron. Mater. 7 (1978) p. 737.CrossRefGoogle Scholar