Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T19:38:39.009Z Has data issue: false hasContentIssue false

New developments in artificially layered ferroelectric oxide superlattices

Published online by Cambridge University Press:  17 December 2013

Matthew Dawber
Affiliation:
Department of Physics and Astronomy, Stony Brook University, NY; [email protected]
Eric Bousquet
Affiliation:
University of Liège, Department of Physics, Belgium; [email protected]
Get access

Abstract

Artificially layered superlattices of oxide materials have been intensely investigated for some time, but continue to reveal new potential as a route to advanced functional materials. As well as considering electrostatics and strain, a more complete picture of the interfaces in these systems also needs to incorporate the possibility of additional structural distortions, electronic redistributions, and complex polarization domain structures. Here we focus on superlattices composed of two perovskite oxide materials, where one is a ferroelectric, and discuss the important interactions between the component materials that determine the behavior of the new artificial material. We discuss interfaces both with and without electronic screening. The first class of interface contains technologically relevant ultrathin ferroelectric capacitors and the more recently studied ferroelectric-metal superlattices. In these systems, the influence of the ferroelectric polarization decreases rapidly with distance from the interface. By contrast, in systems where the materials adjacent to the ferroelectric layers are dielectrics, the polarization of the ferroelectric layer influences the properties of the adjacent layers over a much longer distance, setting the stage for fascinating competition between the properties of the combined materials.

Type
Functional Oxide Interfaces
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rijnders, G., Blank, D.H.A., Nature 433 (7024), 369 (2005).Google Scholar
Stengel, M., Spaldin, N.A., Vanderbilt, D., Nat. Phys. 5 (4), 304 (2009).Google Scholar
Junquera, J., Ghosez, P., Nature 422 (6931), 506 (2003).CrossRefGoogle Scholar
Lichtensteiger, C., Triscone, J.M., Junquera, J., Ghosez, P., Phys. Rev. Lett. 94 (4), 047603 (2005).CrossRefGoogle Scholar
Lee, H.N., Nakhmanson, S.M., Chisholm, M.F., Christen, H.M., Rabe, K.M., Vanderbilt, D., Phys. Rev. Lett. 98 (21), 217602 (2007).Google Scholar
Dawber, M., Chandra, P., Littlewood, P.B., Scott, J.F., J. Phys. Condens. Matter 15 (24), L393 (2003).CrossRefGoogle Scholar
Fong, D.D., Stephenson, G.B., Streiffer, S.K., Eastman, J.A., Auciello, O., Fuoss, P.H., Thompson, C., Science 304 (5677), 1650 (2004).Google Scholar
Nagarajan, V., Junquera, J., He, J.Q., Jia, C.L., Waser, R., Lee, K., Kim, Y.K., Baik, S., Zhao, T., Ramesh, R., Ghosez, P., Rabe, K.M., J. Appl. Phys. 100 (5), 051609 (2006).CrossRefGoogle Scholar
Streiffer, S.K., Eastman, J.A., Fong, D.D., Thompson, C., Munkholm, A., Murty, M.V.R., Auciello, O., Bai, G.R., Stephenson, G.B., Phys. Rev. Lett. 89 (6), 067601 (2002).Google Scholar
Catalan, G., Janssens, A., Rispens, G., Csiszar, S., Seeck, O., Rijnders, G., Blank, D.H.A., Noheda, B., Phys. Rev. Lett. 96 (12), 127602 (2006).CrossRefGoogle Scholar
Gruverman, A., Auciello, O., Tokumoto, H., Annu. Rev. Mater. Sci. 28, 101 (1998).CrossRefGoogle Scholar
Gruverman, A., Kalinin, S.V., J. Mater. Sci. 41 (1), 107 (2006).CrossRefGoogle Scholar
Thompson, C., Fong, D.D., Wang, R.V., Jiang, F., Streiffer, S.K., Latifi, K., Eastman, J.A., Stephenson, G.B., Appl. Phys. Lett. 93 (18), 182901 (2008).Google Scholar
Hruszkewycz, S.O., Highland, M.J., Holt, M.V., Kim, D., Folkman, C.M., Thompson, C., Tripathi, A., Stephenson, G.B., Hong, S., Fuoss, P.H., Phys. Rev. Lett. 110 (17), 177601 (2013).Google Scholar
Fong, D.D., Kolpak, A.M., Eastman, J.A., Streiffer, S.K., Fuoss, P.H., Stephenson, G.B., Thompson, C., Kim, D.M., Choi, K.J., Eom, C.B., Grinberg, I., Rappe, A.M., Phys. Rev. Lett. 96 (12), 127601 (2006).CrossRefGoogle Scholar
Eastman, J.A., Fong, D.D., Fuoss, P.H., Jiang, F., Stephenson, G.B., Streiffer, S.K., Wang, R.V., Latifi, K., Thompson, C., J. Chem. Soc. Abstr. 230, U2794 (2005).Google Scholar
Highland, M.J., Fister, T.T., Fong, D.D., Fuoss, P.H., Thompson, C., Eastman, J.A., Streiffer, S.K., Stephenson, G.B., Phys. Rev. Lett. 107 (18), 187602 (2011).Google Scholar
Highland, M.J., Fister, T.T., Richard, M.I., Fong, D.D., Fuoss, P.H., Thompson, C., Eastman, J.A., Streiffer, S.K., Stephenson, G.B., Phys. Rev. Lett. 105 (16), 167601 (2010).Google Scholar
Aguado-Puente, P., Junquera, J., Phys. Rev. Lett. 100 (17), 177601 (2008).Google Scholar
Dawber, M., Stucki, N., Lichtensteiger, C., Gariglio, S., Ghosez, P., Triscone, J.M., Adv. Mater. 19 (23), 4153 (2007).Google Scholar
Bousquet, E., Junquera, J., Ghosez, P., Phys. Rev. B 82 (4), 045426 (2010).Google Scholar
Neaton, J.B., Rabe, K.M., Appl. Phys. Lett. 82 (10), 1586 (2003).CrossRefGoogle Scholar
Specht, E.D., Christen, H.M., Norton, D.P., Boatner, L.A., Phys. Rev. Lett. 80 (19), 4317 (1998).Google Scholar
Sepliarsky, M., Phillpot, S.R., Wolf, D., Stachiotti, M.G., Migoni, R.L., Phys. Rev. B 64 (6), 060101 (2001).CrossRefGoogle Scholar
Stephanovich, V.A., Luk’yanchuk, I.A., Karkut, M.G., Phys. Rev. Lett. 94 (4), 047601 (2005).Google Scholar
Zubko, P., Jecklin, N., Torres-Pardo, A., Aguado-Puente, P., Gloter, A., Lichtensteiger, C., Junquera, J., Stephan, O., Triscone, J.M., Nano Lett. 12 (6), 2846 (2012).Google Scholar
Aguado-Puente, P., Garcia-Fernandez, P., Junquera, J., Phys. Rev. Lett. 107 (21), 217601 (2011).Google Scholar
Aguado-Puente, P., Junquera, J., Phys. Rev. B 85 (18), 184105 (2012).Google Scholar
Sinsheimer, J., Callori, S.J., Bein, B., Benkara, Y., Daley, J., Coraor, J., Su, D., Stephens, P.W., Dawber, M., Phys. Rev. Lett. 109 (16), 167601 (2012).Google Scholar
Rabe, K.M., in Functional Metal Oxides: New Science and Novel Applications, Ogale, S.B., Venkatesan, T.V., Blamire, M., Eds. (Wiley-VCH, Weinheim, 2013).Google Scholar
Bousquet, E., Dawber, M., Stucki, N., Lichtensteiger, C., Hermet, P., Gariglio, S., Triscone, J.M., Nature 452 (7188), 732 (2008).Google Scholar
Levanyuk, A.P., Sannikov, D.G., Usp. Fiz. Nauk 112, 561 (1974).CrossRefGoogle Scholar
Fennie, C.J., Rabe, K.M., Phys. Rev. B 72 (10), 100103 (2005).CrossRefGoogle Scholar
Benedek, N.A., Fennie, C.J., Phys. Rev. Lett. 106 (10), 107204 (2011).CrossRefGoogle Scholar
Stengel, M., Fennie, C.J., Ghosez, P., Phys. Rev. B 86 (9), 094112 (2012).Google Scholar
Sai, N., Fennie, C.J., Demkov, A.A., Phys. Rev. Lett. 102 (10), (2009).Google Scholar
Rondinelli, J.M., Fennie, C.J., Adv. Mater. 24 (15), 1961 (2012).Google Scholar
Benedek, N.A., Mulder, A.T., Fennie, C.J., J. Solid State Chem. 195, 11 (2012).Google Scholar
Stroppa, A., Barone, P., Jain, P., Perez-Mato, J.M., Picozzi, S., Adv. Mater. 25 (16), 2284 (2013).Google Scholar
Glazer, A., Acta Crystallogr. Sect. B: Struct. Sci. 28 (11), 3384 (1972).CrossRefGoogle Scholar
Mulder, A.T., Benedek, N.A., Rondinelli, J.M., Fennie, C.J., Adv. Funct. Mater. 23 (38), 4810 (2013).CrossRefGoogle Scholar
Zanolli, Z., Wojdel, J.C., Iniguez, J., Ghosez, P., Condens. Matter (2013), (available at http://arxiv.org/abs/1305.5093).Google Scholar
Bibes, M., Villegas, J.E., Barthélémy, A., Adv. Phys. 60 (1), 5 (2011).Google Scholar
Chappert, C., Fert, A., Van Dau, F.N., Nat. Mater. 6 (11), 813 (2007).CrossRefGoogle Scholar
Zhuravlev, M.Y., Jaswal, S.S., Tsymbal, E.Y., Sabirianov, R.F., Appl. Phys. Lett. 87 (22), 222114 (2005).Google Scholar
Garcia, V., Bibes, M., Bocher, L., Valencia, S., Kronast, F., Crassous, A., Moya, X., Enouz-Vedrenne, S., Gloter, A., Imhoff, D., Deranlot, C., Mathur, N.D., Fusil, S., Bouzehouane, K., Barthélémy, A., Science 327 (5969), 1106 (2010).Google Scholar
Duan, C.-G., Jaswal, S.S., Tsymbal, E.Y., Phys. Rev. Lett. 97 (4), 047201 (2006).Google Scholar
Valencia, S., Crassous, A., Bocher, L., Garcia, V., Moya, X., Cherifi, R.O., Deranlot, C., Bouzehouane, K., Fusil, S., Zobelli, A., Gloter, A., Mathur, N.D., Gaupp, A., Abrudan, R., Radu, F., Barthélémy, A., Bibes, M., Nat. Mater. 10 (10), 753 (2011).Google Scholar
Heron, J.T., Trassin, M., Ashraf, K., Gajek, M., He, Q., Yang, S.Y., Nikonov, D.E., Chu, Y.H., Salahuddin, S., Ramesh, R., Phys. Rev. Lett. 107 (21), 217202 (2011).Google Scholar
Fechner, M., Zahn, P., Ostanin, S., Bibes, M., Mertig, I., Phys. Rev. Lett. 108 (19), 197206 (2012).Google Scholar
Hirota, E., Sakakima, H., Inomata, K., Giant Magneto-Resistance Devices (Springer Verlag, Germany, 2002).Google Scholar
Weingart, C., Spaldin, N., Bousquet, E., Phys. Rev. B 86 (9), 094413 (2012).Google Scholar
Niranjan, M.K., Burton, J.D., Velev, J.P., Jaswal, S.S., Tsymbal, E.Y., Appl. Phys. Lett. 95 (5), 052501 (2009).CrossRefGoogle Scholar
Rondinelli, J.M., Spaldin, N.A., Phys. Rev. B 81 (8), 085109 (2010).CrossRefGoogle Scholar
Pardo, V., Pickett, W.E., Phys. Rev. B 81 (24), 245117 (2010).Google Scholar
Jang, H.W., Felker, D.A., Bark, C.W., Wang, Y., Niranjan, M.K., Nelson, C.T., Zhang, Y., Su, D., Folkman, C.M., Baek, S.H., Lee, S., Janicka, K., Zhu, Y., Pan, X.Q., Fong, D.D., Tsymbal, E.Y., Rzchowski, M.S., Eom, C.B., Science 331 (6019), 886 (2011).CrossRefGoogle Scholar
Verissimo-Alves, M., Garcia-Fernandez, P., Bilc, D.I., Ghosez, P., Junquera, J., Phys. Rev. Lett. 108 (10), 107003 (2012).Google Scholar
Garcia-Fernandez, P., Verissimo-Alves, M., Bilc, D.I., Ghosez, P., Junquera, J., Phys. Rev. B 86 (8), 085305 (2012).CrossRefGoogle Scholar
Lu, H., George, T.A., Wang, Y., Ketsman, I., Burton, J.D., Bark, C.W., Ryu, S., Kim, D.J., Wang, J., Binek, C., Dowben, P.A., Sokolov, A., Eom, C.B., Tsymbal, E.Y., Gruverman, A., Appl. Phys. Lett. 100 (23), 232904 (2012).Google Scholar
Callori, S.J., Gabel, J., Su, D., Sinsheimer, J., Fernandez-Serra, M.V., Dawber, M., Phys. Rev. Lett. 109 (6), 067601 (2012).Google Scholar
Berger, R.F., Neaton, J.B., Phys. Rev. B 86 (16), 165211 (2012).Google Scholar
Lee, H.N., Christen, H.M., Chisholm, M.F., Rouleau, C.M., Lowndes, D.H., Nature 433 (7024), 395 (2005).Google Scholar
Nakhmanson, S.M., Rabe, K.M., Vanderbilt, D., Phys. Rev. B 73 (6), 060101 (2006).Google Scholar
Rogdakis, K., Seo, J.W., Viskadourakis, Z., Wang, Y., Ah Qune, L.F.N, Choi, E., Burton, J.D., Tsymbal, E.Y., Lee, J., Panagopoulos, C., Nat. Commun. 3, 1064 (2012).Google Scholar
Hatt, A.J., Spaldin, N.A., Appl. Phys. Lett. 90 (24), 242916 (2007).Google Scholar
Nakhmanson, S.M., Rabe, K.M., Vanderbilt, D., Appl. Phys. Lett. 87 (10), 102906 (2005).Google Scholar
Kida, N., Yamada, H., Sato, H., Arima, T., Kawasaki, M., Akoh, H., Tokura, Y., Phys. Rev. Lett. 99 (19), 197404 (2007).Google Scholar