Published online by Cambridge University Press: 29 November 2013
The substantial power of both elastic and inelastic neutron-scattering techniques for the investigation of the structure and dynamics of biological systems and related biomolecular-based materials—as with soft matter in the previous article by Lindner and Wignall—arises primarily from the essentially isomorphous nature of the substitution of deuterium for selected hydrogen atoms in these systems, coupled with the exquisite sensitivity of neutron scattering to this isotopic substitution. Since these systems are comprised of large macromolecules and supramolecular assemblies thereof, their essential structures and dynamics extend from the atomic scale up to very large length scales of the Order of 101–104 Å. Hence neutron sources and neutron-scattering spectrometers optimized for longer wavelength (or “cold”) thermal neutrons are necessary in order to most effectively address the structure and dynamics at the longer length scales inherent to these Systems.
The large majority of previous neutron-scattering experiments on biological systems have been performed with reactor neutron sources. Some of the more significant of these are briefly summarized in the following sections. They may be categorized in terms of the nature of the intermolecular order, both orientational and positional, within the System of interest and either the elastic neutron-scattering technique employed to investigate their time-averaged structures or the inelastic neutron-scattering technique employed to investigate their dynamics.