Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T02:51:57.853Z Has data issue: false hasContentIssue false

Neutron Powder Diffraction

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

For many classes of materials, neutron diffraction is the best way to obtain detailed atomic-level structural information. Diffraction experiments on single crystals provide the most precise data, but sufficiently large specimens (>0.1–0.5 mm3) are often not available. Steady development of instrumentation and data analysis techniques, however, has now made it possible to obtain comparably precise structural information from neutron diffraction experiments on powder samples. Such studies have played a prominent role in solid state physics, chemistry, and materials science in recent years. The special capabilities that have contributed to the success of this technique include atomic cross sections that are often favorable for a particular structural problem, high neutron penetrating power, the excellent resolution achieved with state-of-the-art diffractometers, and steadily advancing analysis techniques that facilitate obtaining structural information from a diverse range of polycrystalline materials.

As Axe, Pynn, and Hayter note in their introductory article in this issue of the MRS BULLETIN, atomic scattering cross sections for neutrons are not simply a function of atomic number, as is the case for x-rays. The scattering is predominantly from the nuclei (thus avoiding the form factor diminution observed for x-ray scattering), and coherent neutron scattering cross sections can, generally, be as large for light atoms as for heavy atoms. Light atoms, such as hydrogen (deuterium), oxygen, nitrogen, carbon, or lithium, can therefore be located in the presence of heavier atoms. This advantage has led to the widespread use of neutron powder diffraction for studing metal hydrides and, more recently, oxide superconductors.

Type
Neutron Scattering
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bacon, G.E., Neutron Diffraction (Clarendon Press, 1975); Chemical Applications of Thermal Neutron Scattering, edited by B.T.M. Willis, (Oxford University Press, 1973).Google Scholar
2.Lovesey, S.M., Theory of Neutron Scattering from Condensed Matter, Vols. I and II (Oxford University Press, 1986).Google Scholar
3.Sears, V.F., in Methods of Experimental Physics: Neutron Scattering, Vol. 23, Part A, edited by Skold, K. and Price, D.L. (Academic Press, New York, 1986) p. 521.CrossRefGoogle Scholar
4.Jorgensen, J.D., in Chemical Crystallography with Pulsed Neutrons and Synchrotron X-rays, edited by Carrondo, M.A. and Jeffrey, G.A., (NATO ASI Series C: Vol. 221, D. Reidel, Dordrecht, Holland, 1988) p. 159.CrossRefGoogle Scholar
5.Rietveld, H.M., J. Appl. Crystallogr. 2 (1969) p. 65; see also the review by A. Albinati and B.T.M. Willis, J. Appl. Crystallogr. 15 (1982) p. 361.CrossRefGoogle Scholar
6.Hewat, A.W., Nucl. Instrum. Methods 127 (1975) p. 361; A.W. Hewat and I. Bailey, Nucl. Instrum. Methods 137 (1976) p. 463.CrossRefGoogle Scholar
7.Hewat, A.W., Materials Science Forum 9 (1986) p. 69.CrossRefGoogle Scholar
8.Jorgensen, J.D. and Rotella, F.J., J. Appl. Crystallogr. 15 (1982) p. 27.CrossRefGoogle Scholar
9.Jorgensen, J.D., Faber, J. Jr., Carpenter, J.M., Crawford, R.K., Haumann, J.R., Hitterman, R.L., Kleb, R., Ostrowski, G.E., Rotella, F.J., and Worlton, T.G., J. Appl. Crystallogr. 22 (1989) p. 321.CrossRefGoogle Scholar
10. See for example the reviews: Cheetham, A.K. and Taylor, J.C., J. Solid State Chem. 21 (1977) p. 253; A.W. Hewat, Chemica Scripta 26A (1986) p. 119.CrossRefGoogle Scholar
11.Newsam, J.M., Jacobson, A.J., McCandlish, L.E., and Polizzotti, R.S., J. Solid State Chem. 75 (1988) p. 296.CrossRefGoogle Scholar
12.Pawley, G.S., Mackenzie, G.A., and Dietrick, D.W., Acta Crystallogr. A33 (1977) p. 142.CrossRefGoogle Scholar
13.Baerlocher, Ch., The X-Ray Rietveld System XRS-84 (ETH Zürich, 1984).CrossRefGoogle Scholar
14.Larson, A.C. and Von Dreele, R.B., Generalized Structure Analysis System, GSAS (Los Alamos National Laboratory Report LAUR 86-748, 1986).Google Scholar
15.Adams, J.M., Pritchard, R.G., and Hewat, A.W., Acta Crystallogr. B35 (1979) p. 1759.CrossRefGoogle Scholar
16.Tofield, B.C., Jacobson, A.J., England, W.A., Clarke, P.J., and Thomas, M.W., J. Solid State Chem. 30 (1979) p. 1; J.M. Newsam, A.K. Cheetham, and B.C. Tofield, J. Solid State Chem. 60 (1985) p. 214.CrossRefGoogle Scholar
17.Rotella, F.J., Jorgensen, J.D., Morosin, B., and Biefeld, B., Solid State Ionics 5 (1981) p. 455; F.J. Rotella, J.D. Jorgensen, B. Biefeld, and B. Morosin, Acta Crsytallogr. B38 (1982) p. 1697.CrossRefGoogle Scholar
18.Jorgensen, J.D., Dabrowski, B., Pei, Shiyou, Hinks, D.G., Soderholm, L., Morosin, B., Schirber, J.E., Venturini, E.L., and Ginley, D.S., Phys. Rev. B 38 (1988) p. 11337; J.D. Jorgensen, B. Dabrowski, Shiyou Pei, D.R. Richards, and D.G. Hinks, Phys. Rev. B 40 (1989) p. 2187.CrossRefGoogle Scholar
19.Newsam, J.M., Materials Science Forum, 27/28 (1988) p. 385.CrossRefGoogle Scholar
20.Wright, P.A., Thomas, J.M., Cheetham, A.K., and Nowak, A.K., Nature 318 (1985) p. 611.CrossRefGoogle Scholar
21.Newsam, J.M., J. Phys. Chem. 93 (1989) p. 7689.CrossRefGoogle Scholar
22.Fischer, P., Schwarzenbach, D., and Rietveld, H. M., J. Phys. Chem. Solids 32 (1971) p. 543.CrossRefGoogle Scholar
23.Cheetham, A.K., David, W.I.F., Eddy, M.M., Jakeman, R.B., Johnson, M.W., and Torardi, C. C., Nature 320 (1986) p. 46.CrossRefGoogle Scholar
24.Deem, M.W. and Newsam, J.M., Nature 342 (1989) p. 260.CrossRefGoogle Scholar
25.Leblanc, M., Ferey, G., Lacorre, P., and Pannetier, J., Physica B 156/157 (1989) p. 327.CrossRefGoogle Scholar
26.Mucker, K.F., Harris, P.M., White, D., and Erickson, R.A., J. Chem. Phys. 49 (1968) p. 1922.CrossRefGoogle Scholar
27.Titcomb, C.G., Cheetham, A.K., and Fender, B.E.F., J. Phys. C 7 (1974) p. 2409.Google Scholar
28.Hardman-Rhyne, K., Rhyne, J.J., Prince, E., Crowder, C., and James, W.J., Phys. Rev. B 29 (1984) p. 416.CrossRefGoogle Scholar
29.Fitch, A.N., Barrett, S.A., Fender, B.E.F., and Simon, A., J. Chem. Soc. Dalton Trans. 4 (1984) p. 501.CrossRefGoogle Scholar
30.Noreus, D., Olsson, L.G., and Werner, P.E., J. Phys. F 13 (1983) p. 715.CrossRefGoogle Scholar
31.Fischer, P., Furrer, A., Busch, G., and Schlapbach, L., Helv. Phys. Acta 50 (1977) p. 421.Google Scholar
32.Rotella, F.J., Flotow, H.E., Gruen, D.M., and Jorgensen, J.D., J. Chem. Phys. 79 (1983) p. 4522.CrossRefGoogle Scholar
33.Kuhs, W.F., Finney, J.L., Vettier, C., and Bliss, D. V., J. Chem. Phys. 81 (1984) p. 3612; J.D. Jorgensen, R.A. Beyerlein, N. Watanabe, and T.G. Worlton, J. Chem. Phys. 81 (1984) p. 3211; J.D. Jorgensen and T.G. Worlton, J. Chem. Phys. 83 (1985) p. 329.CrossRefGoogle Scholar
34.Hewat, A.W. and Riekel, C., Acta Crystallogr. A35 (1979) p. 569.CrossRefGoogle Scholar
35.Glaunsinger, W., Von Dreele, R.B., Marke, R.F., Hanson, R.C., Chieux, P., Damay, P., and Catterall, R., J. Phys. Chem. 88 (1984) p. 3860.CrossRefGoogle Scholar
36.Loopstra, B.O., Acta Cryst. B26 (1970) p. 656.CrossRefGoogle Scholar
37.Von Dreele, R.B., Eyring, L., Bowman, A.L., and Yarnell, J.L., Acta Cryst. B31 (1975) p. 971.CrossRefGoogle Scholar
38.Schuller, I.K. and Jorgensen, J.D., MRS BULLETIN 14 (1) (1989) p. 27.CrossRefGoogle Scholar
39.Davidson, I.J. and Greeden, J.E., J. Solid State Chem. 51 (1984) p. 104.CrossRefGoogle Scholar
40.Cava, R.J., Murphy, D.W., Zahurak, S., Santoro, A., and Roth, R.S., J. Solid State Chem. 53 (1984) p. 64.CrossRefGoogle Scholar
41.Jorgensen, J.D., Rotella, F.J., and Roth, W.L., Solid State Ionics 5 (1981) p. 143.CrossRefGoogle Scholar
42.Susman, S. and Brun, T.O., Solid State Ionics 5 (1981) p. 413.CrossRefGoogle Scholar
43.Lager, G.A., Armbruster, T., Ross, F.K., Rotella, F.J., and Jorgensen, J.D., J. Appl. Crystallogr. 14 (1981) p. 261.CrossRefGoogle Scholar
44.Fischer, P., Halg, W., Schwarzenbach, D., and Gamsjager, H., J. Phys. Chem. Solids 35 (1974) p. 1683.CrossRefGoogle Scholar
45.Bartscher, W., Boeuf, A., Caciuffo, R., Fournier, J.M., Haschke, J.M., Nanes, L., Rebizant, J., Rustichelli, R., and Ward, J.W., Solid State Commun. 52 (1984) p. 619.CrossRefGoogle Scholar
46.Massa, W. and Steiner, M., J. Solid State Chem. 32 (1980) p. 137.CrossRefGoogle Scholar
47.Day, P., Gregson, A.K., Leech, D.H., Hutchings, M.T., and Rainford, B.D., J. Magn. Magn. Mater. 14 (1979) p. 166.CrossRefGoogle Scholar
48.Khattak, C.P., Cox, D.E., and Wang, F.F.Y., J. Solid State Chem. 17 (1976) p. 232.CrossRefGoogle Scholar
49.Greaves, C., Jacobson, A.J., Tofield, B.C., and Fender, B.E.F., Acta Cryst. B31 (1975) p. 641.CrossRefGoogle Scholar
50.Battle, P.D. and Macklin, W.J., J. Solid State Chem. 52 (1984) p. 138.CrossRefGoogle Scholar
51.Sinha, S.K., MRS BULLETIN 13 (6) (June 1988) p. 24.CrossRefGoogle Scholar
52.Yelon, W.B., Materials Science Forum, 271 28 (1987) p. 371.Google Scholar
53.Tofield, B.C., Struct. Bonding 21 (1975) p. 1.CrossRefGoogle Scholar
54.Wilkinson, C., Cheetham, A.K., Long, G.J., Battle, P.D., and Hope, D.A.O., Inorg. Chem. 23 (1984) p. 3136.CrossRefGoogle Scholar
55.Newsam, J.M., Endoh, Y., Ishikawa, Y., and Takei, H., J. Phys. C 19 (1986) p. 1273.Google Scholar
56.Vaknin, D., Sinha, S.K., Moncton, D.E., Johnston, D.C., Newsam, J.M., Safinya, C.R., and King, H.E. Jr., Phys. Rev. Lett. 58 (1987) p. 2802.CrossRefGoogle Scholar
57.Mitsuda, S., Shirane, G., Sinha, S.K., Johnston, D.C., Alvarez, M.S., Vaknin, D., and Moncton, D.E., Phys. Rev. B 36 (1987) p. 822.CrossRefGoogle Scholar
58.Hewat, A.W., J. Phys. C 6 (1973) p. 2559.Google Scholar
59.Santoro, A., Solid State Ionics 9/10 (1983) p. 31.CrossRefGoogle Scholar
60.Cockroft, J.K. and Fitch, A.N., Z. Kristallogr. 184 (1988) p. 123.Google Scholar
61.Passell, L., Satija, S.K., Sutton, M., and Suzanne, J., in Chemistry and Physics of Solid Surfaces VI, edited by Vanselow, R. (Springer Verlag, New York, 1986) p. 609.CrossRefGoogle Scholar
62.Jorgensen, J.D., Beno, M.A., Hinks, D.G., Soderholm, L., Volin, K.J., Hitterman, R.L., Grace, J.D., Schuller, I.K., Segre, C.U., Zhang, K., and Kleefisch, M.S., Phys. Rev. B 36 (1987) p. 3608.CrossRefGoogle Scholar
63.Medarde, M., Rodriguez, J., Vallet, M., Pernet, M., Obradors, X., and Pannetier, J., Physica B 156/157 (1989) p. 36.CrossRefGoogle Scholar
64.Pannetier, J., in Chemical Crystallography with Pulsed Neutrons and Synchrotron X-Rays, edited by Carrondo, M.A. and Jeffrey, G.A., (NATO ASI Series C: Vol. 221, D. Reidel, Dordrecht, Holland, 1988) p. 313.CrossRefGoogle Scholar
65.Garbauskas, M.F., Arendt, R.H., Jorgensen, J.D., and Hitterman, R.L., in High Temperature Superconductors: Fundamental Properties and Novel Materials, edited by Narayan, J., Chu, C.W., Schneemeyer, L.F., and Christen, D.K. (Mater. Res. Soc. Symp. Proc. 169, Pittsburgh, PA, 1990) p. 129.Google Scholar
66.Jorgensen, J.D., Pei, S., Lightfoot, P., Shi, H., Paulikas, A.P., and Veal, B.W., Physica C 167 (1990) p. 571.CrossRefGoogle Scholar
67.Faber, J. Jr., Physica B 150 (1988) p. 241.Google Scholar
68. See, for example, Revue de Physique Applique 19 (Sept. 1984), an entire issue is devoted to sample environments for neutron and x-ray experiments.Google Scholar
69.Carlile, C.J. and Salter, D.C., High Temp.-High Pressures 10 (1978) p. 1; D.B. McWhan, Revue Phys. Appl. 19 (1984) p. 715; J. Paureau and C. Vettier, Rev. Sci. Instrum. 46 (1975) p. 1484; D.B. McWhan, in High Pressure Science and Technology, Physical Properties and Materials Synthesis, Vol. I, edited by K.D. Timmerhaus and M.S. Barber, (Plenum, New York, 1979) p. 292.Google Scholar
70.Jorgensen, J.D., High Pressure Research 4 (1990) p. 441.CrossRefGoogle Scholar
71.Press, W., Eckert, J., Cox, D.E., Ratter, C., and Kamitakahara, W., Phys. Rev. B 14 (1976) p. 1983.CrossRefGoogle Scholar
72.Jorgensen, J.-E., Jorgensen, J.D., Batlogg, B., Remeika, J.P., and Axe, J.D., Phys. Rev. B 33 (1986) p. 4793.CrossRefGoogle Scholar