Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T22:53:50.680Z Has data issue: false hasContentIssue false

The Nature of Superconductivity in Ba1-XKXBiO3

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Superconductivity in potassium-doped BaBiO3 was first observed by Mattheiss et al. in 1988 and the structure of the superconducting material was determined by Cava et al. The material crystallizes in a simple perovskite structure with potassium substituted on the barium site as shown in Figure 1. Unlike the layered copper-oxide materials, this compound is simple cubic and thus isotropic in the superconducting state and shows no magnetism. Band theory calculations show that the electronic structure is simple, with conduction bands composed of Bi(sp)O(p) hybridized orbitals and, unlike the copper-oxide materials, there are no d electrons at the Fermi surface or involved in the superconductivity. Photoemission and inverse-photoemission agree well with the theoretical calculations and show metallic behavior with a low density of states at the Fermi level consisting of Bi-O sp hybrids. This material is structurally and electronically simple compared to the copper-oxide compounds and, therefore, should be much easier to investigate experimentally and understand theoretically. This article discusses recent results concerning the structural properties of the material and describes several experiments that give information on the superconducting state.

Type
Properties of High Tc Superconductors
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mattheiss, L.F., Gyorgy, E.M., and Johnson, D.W. Jr., Phys. Rev. B 37 (1988) p. 3745.CrossRefGoogle Scholar
2.Cava, R.J., Batlogg, B., Krajewski, J.J., Farrow, R.C., Rupp, L.W. Jr., White, A.E., Short, K.T., Peck, W.F. Jr. and Kometani, T.V., Nature 332 (1988) p. 814.CrossRefGoogle Scholar
3.Mattheiss, L.F. and Hamann, D.R., Phys. Rev. Lett. 60 (1988) p. 2681.CrossRefGoogle Scholar
4.Hamada, N., Massidda, S., Freeman, A.J., and Redinger, J., Phys. Rev. B 40 (1989) p. 4442.CrossRefGoogle Scholar
5.Papaconstantopoulos, D.A., Pasturel, A., Julien, J.P., and Cyrot-Lackmann, F., Phys. Rev. B 40 (1989) p. 8844.CrossRefGoogle Scholar
6.Wagener, T.J., Meyer, H.M. III, Hill, D.M., Hu, Yongjun, Jost, M.B., Weaver, J.H., Hinks, D.G., Dabrowski, B., and Richards, D.G., Phys. Rev. B 40 (1989) p. 4532.CrossRefGoogle Scholar
7.Sleight, A.W., Gilson, J.L., and Bierstedt, P.E., Solid State Commun. 17 (1975) p. 27.CrossRefGoogle Scholar
8.Mattheiss, L.F. and Hamann, D.R., Phys. Rev. B 28 (1983) p. 4227.CrossRefGoogle Scholar
9.Cox, D.E. and Sleight, A.W., Solid State Commun. 19 (1976) p. 969.CrossRefGoogle Scholar
10.Cox, D.E. and Sleight, A.W., Acta Cryst. B 35 (1979) p. 1.CrossRefGoogle Scholar
11.Machida, K., Physica C 156 (1988) p. 276.CrossRefGoogle Scholar
12.Hinks, D.G., Dabrowski, B., Jorgensen, J.D., Mitchell, A.W., Richards, D.R., Pei, Shiyou, and Shi, Donglu, Nature 333 (1988) p. 836.CrossRefGoogle Scholar
13.Sato, H., Tajima, S., Takahi, H., and Uchida, S., Nature 338 (1989) p. 241.CrossRefGoogle Scholar
14.Pei, Shiyou, Jorgensen, J.D., Dabrowski, B., Hinks, D.G., Richards, D.R., and Mitchell, A.W., Phys. Rev. B. to be published March 1, 1990.Google Scholar
15.Cox, D.E. and Sleight, A.W., in Proceedings of the Conference on Neutron Scattering, edited by Moon, R.M. (National Technical Information Service, Springfield VA, 1976), p. 4554.Google Scholar
16.Varma, C.M., Phys. Rev. Lett. 61 (1988) p. 2713.CrossRefGoogle Scholar
17.Weber, W., Jpn. J. Appl. Phys. 26 Suppl. 3 (1987) p. 981.CrossRefGoogle Scholar
18.Jurczek, E. and Rice, T.M., Europhys. Lett. 1 (1986) p. 255.CrossRefGoogle Scholar
19.Pei, S., Zaluzek, N.J., Jorgensen, J.D., Dabrowski, B., Hinks, D.G., Mitchell, A.W., and Richards, D.R., Phys. Rev. B (1989) p. 39811.Google Scholar
20.Hewat, E.A., Chaillout, C., Godinho, M., Gorius, M.F., and Marezio, M., Physica C 157 (1989) p. 228.CrossRefGoogle Scholar
21.Allen, P.B. and Dynes, R.C., Phys. Rev. B 12 (1975) p. 905 and the references therein.CrossRefGoogle Scholar
22.Schlesinger, Z., Collins, R.T., Calise, J.A., Hinks, D.G., Mitchell, A.W., Zheng, Y., Dabrowski, B., Bickers, N.E., and Scalapino, D.J., Phys. Rev. B 40 (1989) p. 6862.CrossRefGoogle Scholar
23.Batlogg, B., Cava, R.J., Rupp, L.W., Mujsce, A.M., Krajewski, J.J., Remeiki, J.P., Peck, W.F. Jr., Cooper, A.S., and Espinosa, G.P., Phys. Rev. Lett. 61 (1988) p. 1670.CrossRefGoogle Scholar
24.Kwok, W.K., Welp, U., Crabtree, G.W., Vandervoort, K.G., Hulscher, R., Zheng, Y., Dabrowski, B., and Hinks, D.G., Phys. Rev. B 40 (1989) p. 9400.CrossRefGoogle Scholar
25.Hinks, D.G., Richards, D.R., Dabrowski, B., Marx, D.T., and Mitchell, A.W., Nature 335 (1988) p. 419.CrossRefGoogle Scholar
26.Kondoh, S., Sera, M., Ando, Y., and Sato, M., Physica C 157 (1989) p. 469.CrossRefGoogle Scholar
27.Loong, C.-K., Vashishta, P., Kalia, R.K., Degani, M.H., Price, D.L., Jorgensen, J.D., Hinks, D.G., Dabrowski, B., Mitchell, A.W., Richards, D.R., and Zheng, Y., Phys. Rev. Lett. 62 (1989) p. 2628.CrossRefGoogle Scholar
28.McCarty, K.F., Radousky, H.B., Hinks, D.G., Zheng, Y., Mitchell, A.W., Folkerts, T.J., and Shelton, R.N., Phys. Rev. B 40 (1989) p. 2662.CrossRefGoogle Scholar
29.Reichardt, W., Batlogg, B., and Remeika, J.P., Physica B 135 (1985) p. 501.Google Scholar
30.Zasadzinski, J.F., Tralshawala, N., Hinks, D.G., Dabrowski, B., Mitchell, A.W., and Richards, D.R., Physica C 158 (1989) p. 519.CrossRefGoogle Scholar
31.Shirai, M., Suzuki, N., and Motizuki, K., J. Phys.: Condens. Matter 1 (1989) p. 2939 and preprint, submitted J. Phys.: Condens. Matter.Google Scholar