Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T11:23:22.607Z Has data issue: false hasContentIssue false

Nanotubes and the Pursuit of Applications

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

A wide range of potential applications was suggested shortly after carbon nanotubes were discovered, including new super-strong materials, field-emission devices, hydrogen storage systems, novel electronic devices, and more. In this article, the actual advances in the technology of nanotubes over the last decade are examined. Particular attention is focused on current commercially viable applications and those with imminent commercial promise. The relatively large number of nanotube-related patents and nanotube-based startup companies stand in contrast to the relatively low output in commercial applications. The drive toward nanotube applications, in contrast to nanotube science, is investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iijima, S., Nature 354 (1991) p. 56.CrossRefGoogle Scholar
2. Tennent, H.G., “Carbon fibrils, method for producing same and compositions containing same,” U.S. Patent 4,663,230, May 5, 1987.Google Scholar
3. Oberlin, A., Endo, M., and Koyama, T., J. Cryst. Growth 32 (1976) p. 35.CrossRefGoogle Scholar
4. Olson, D.W., “Diamond, Industrial,” U.S. Geological Survey Minerals Yearbook—2001, http://minerals.usgs.gov/minerals/pubs/commodity/diamond/diamon01.pdf (accessed March 2004).Google Scholar
5. Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., and Smalley, R.E., Nature 318 (1985) p. 162.CrossRefGoogle Scholar
6. Krätschmer, W., Lamb, L.D., Foristopoulos, K., and Huffman, D.R., Nature 347 (1990) p. 354.CrossRefGoogle Scholar
7. Cox, D., Behal, S., Disko, M., Gorun, S., Greaney, M., Hsu, C., Kollin, E., Millar, J., Robbins, J., Robbins, W., Sherwood, R., and Tindall, P., J. Am. Chem. Soc. 113 (1991) p. 2940; see also SES Research Web site, http://www.sesres.com (accessed March 2004).CrossRefGoogle Scholar
8. Dresselhaus, M., Dresselhaus, G., and Avouris, P., Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Springer-Verlag, Berlin, 2001).CrossRefGoogle Scholar
9. Mintmire, J.W., Dunlap, B.I., and White, C.T., Phys. Rev. Lett. 68 (1992) p. 631.CrossRefGoogle Scholar
10. Mintmire, J.W. and White, C.T., Carbon 33 (1995) p. 893.CrossRefGoogle Scholar
11. Langer, L., Bayot, V., Grivei, E., Issi, J.-P., Heremans, J.P., Olk, C.H., Stockman, L., C. Van Haesendonck, and Bruynseraede, Y., Phys. Rev. Lett. 76 (1996) p. 479.CrossRefGoogle Scholar
12. Dai, H., Wong, E.W., and Lieber, C.M., Science 272 (1996) p. 523.CrossRefGoogle Scholar
13. Bachtold, A., Fuhrer, M.S., Plyasunov, S., Forero, M., Anderson, E.H., Zettl, A., and McEuen, P.L., Phys. Rev. Lett. 84 (2000) p. 6082.CrossRefGoogle Scholar
14. Frank, S., Poncharal, P., Wang, Z.L., and Heer, W.A. de, Science 280 (1998) p. 1744.CrossRefGoogle Scholar
15. Hyperion Catalysis International Inc. home page, http://www.fibrils.com/ (accessed March 2004).Google Scholar
16. Ebbesen, T.W. and Ajayan, P.M., Nature 358 (1992) p. 220.CrossRefGoogle Scholar
17. Iijima, S. and Ichihashi, T., Nature 363 (1993) p. 603.CrossRefGoogle Scholar
18. Bethune, D.S., Kiang, C.H., deVries, M.S., Gorman, G., Savoy, R., Vazquez, J., and Beyers, R., Nature 363 (1993) p. 605.CrossRefGoogle Scholar
19. Bethune, D.S., Beyers, R.B., and Kiang, C.H., “Carbon fibers and method for their production,” U.S. Patent 5,424,054, June 13, 1995.Google Scholar
20. Li, W., Xie, S., Qian, L., Chang, B., Zou, B., Zhou, W., Zhao, R., and Wang, G., Science 274 (1996) p. 1701.CrossRefGoogle Scholar
21. Terrones, M., Grobert, N., Olivares, J., Zhang, J.P., Terrones, H., Kordatos, K., Hsu, W.K., Hare, J.P., Townsend, P.D., Prassides, K., Cheetham, A.K., Kroto, H.W., and Walton, D.R.M., Nature 388 (1997) p. 52.CrossRefGoogle Scholar
22. Pan, Z., Xie, S., Chang, B., Wang, C., Lu, L., Liu, W., Zhou, M., and Li, W., Nature 394 (1998) p. 483.CrossRefGoogle Scholar
23. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tombnek, D., Fischer, J.E., and Smalley, R.E., Science 273 (1996) p. 483.CrossRefGoogle Scholar
24. Schlittler, R., Seo, J., Gimzewski, J., Durkan, C., Saifullah, M., and Welland, M., Science 292 (2001) p. 1136.CrossRefGoogle Scholar
25. Welland, M., Durkan, M.C., Saifullah, M., Seo, J., Schlittler, R., and Gimzewski, J., Science 300 (2003).CrossRefGoogle Scholar
26. Kusunoki, M., Suzuki, T., Honjo, C., Hirayama, T., and Shibata, N., Chem. Phys. Lett. 366 (2002) p. 458.CrossRefGoogle Scholar
27. Andrews, R., Jacques, D., Rao, A.M., Rantell, T., Derbyshire, F., Chen, Y., Chen, J., and Haddon, R.C., Appl. Phys. Lett. 75 (1999) p. 1329.CrossRefGoogle Scholar
28. Dalton, A.B., Collins, S., Muñoz, E., Raza, J.M., Ebron, V.H., Ferraris, J.P., Coleman, J.N., Kim, B.G., and Baughman, R.H., Nature 423 (2003) p. 703.CrossRefGoogle Scholar
29. Heer, W.A. de, Chatelain, A., and Ugarte, D., Science 270 (1995) p. 1179.CrossRefGoogle Scholar
30. Heer, W.A. de, “Electron source and applications of the same,” international patent WO9642101 (December 27, 1996).Google Scholar
31. Dillon, A., Jones, K.M., Bekkedahl, T., Kiang, C., Bethune, D., and Heben, M., Nature 386 (1997) p. 377.CrossRefGoogle Scholar
32. Heben, M. and Dillon, A., Science 287 (2000) p. 593.CrossRefGoogle Scholar
33. Kajiura, H., Tsutsui, S., Kadono, K., Kakuta, M., Ata, M., and Murakami, Y., Appl. Phys. Lett. 82 (2003) p. 1105.CrossRefGoogle Scholar
34. Tans, S.J., Verschueren, R.M., and Dekker, C., Nature 393 (1998) p. 49.CrossRefGoogle Scholar
35. Dresselhaus, M.S., Dresselhaus, G., and Eklund, P.C., The Science of Fullerenes and Nanotubes (Academic Press, London, 1996).Google Scholar
36. Avouris, P., Martel, R., Derycke, V., and Appenzeller, J., Physica B 323 (2002) p. 6.CrossRefGoogle Scholar
37. Collins, P.G., Bradley, K., Ishigami, M., and Zettl, A., Science 287 (2000) p. 1801.CrossRefGoogle Scholar
38. Kong, J., Franklin, N., Zhou, C., Chapline, M., Peng, S., Cho, K., and Dai, H., Science 287 (2000) p. 622.CrossRefGoogle Scholar
39. Javey, A., Guo, J., Wang, Q., Lundstrom, M., and Dai, H.J., Nature 424 (2003) p. 654.CrossRefGoogle Scholar
40. Poncharal, P., Berger, C., Yi, Y., Wang, Z., and Heer, W.A. de, J. Phys. Chem. B 106 (2002) p. 12104.CrossRefGoogle Scholar
41. Liang, W.J., Bockrath, M., Bozovic, D., Hafner, J.H., Tinkham, M., and Park, H., Nature 411 (2001) p. 665.CrossRefGoogle Scholar
42. Kong, J., Yenilmez, E., Tombler, T.W., Kim, W., Dai, H.J., Laughlin, R.B., Liu, L., Jayanthi, C.S., and Wu, S.Y., Phys. Rev. Lett. 106801 (2001) p. 87.Google Scholar
43. Yao, Z., Kane, C.L., and Dekker, C., Phys. Rev. Lett. 84 (2000) p. 2941.CrossRefGoogle Scholar
44. Schonenberger, C., Bachtold, A., Strunk, C., Salvetat, J., and Forro, L., Appl. Phys. A 69 (1999) p. 283.Google Scholar
45. Bonard, J., Salvetat, J., Stockli, T., Heer, W. de, Forro, L., and Chatelain, A., Appl. Phys. Lett. 73 (1998) p. 918.CrossRefGoogle Scholar
46. Nano-Proprietary Inc. news release, “Applied Nanotech, Inc. Announces Breakthrough with Carbon Nanotube Electron Sources,” http://www.nano-proprietary.com/news/press_releases/May_13_2003.pdf (accessed February 2004).Google Scholar
47. Bonard, J., Stockli, T., Maier, F., Heer, W. de, Chatelain, A., Salvetat, J., and Forro, L., Phys. Rev. Lett. 81 (1998) p. 1441.CrossRefGoogle Scholar
48. Obraztsov, A., Zakhidov, A., Volkov, A., and Lyashenko, D., Diamond Relat. Mater. 12 (2003) p. 446.CrossRefGoogle Scholar
49. Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., and Ruoff, R.S., Science 287 (2000) p. 637.CrossRefGoogle Scholar
50. Poncharal, P., Wang, Z.L., Ugarte, D., and Heer, W.A. de, Science 283 (1999) p. 1513.CrossRefGoogle Scholar
51. Treacy, M.M., Ebbesen, T.W., and Gibson, J.M., Nature 38 (1996) p. 678.CrossRefGoogle Scholar
52. Baughman, R., Zakhidov, A., and Heer, W.A. de, Science 297 (2002) p. 787.CrossRefGoogle Scholar
53. Choi, Y., Cho, Y., Kang, J., Kim, Y., Kim, I., Park, S., Lee, H., Hwang, S., Lee, S., Lee, C., Oh, T., Choi, J., Kang, S., and Kim, J., Appl. Phys. Lett. 82 (2003) p. 3565.CrossRefGoogle Scholar
54. Jung, J., Jin, Y., Choi, J., Park, Y., Ko, T., Chung, D., Kim, J., Jang, J., Cha, S., Yi, W., Cho, S., Yoon, M., Lee, C., You, J., Lee, N., Yoo, J., and Kim, J., Physica B 323 (2002) p. 71.CrossRefGoogle Scholar
56. Lee, N., Chung, D., Han, I., Kang, J., Choi, Y., Kim, H., Park, S., Jin, Y., Yi, W., Yun, M., Jung, J., Lee, C., You, J., Jo, S., Lee, C.G., and Kim, J.M., Diamond Relat. Mater. 10 (2001) p. 265.CrossRefGoogle Scholar
56. Motorola Labs press release, “Motorola Labs Announces Significant Progress in Carbon Nanotube Technology,” http://www.motorola. com/mediacenter/press/releases/Jul/MotPR_2981_2436.rtf (accessed February 2004).Google Scholar
57. Noritake Itron Web site, “Ultra Bright Light Source,” http://www.itronise.co.jp/english/nano/ (accessed February 2004).Google Scholar
58. Heinze, S., Tersoff, J., Martel, R., Derycke, V., Appenzeller, J., and Avouris, P., Phys. Rev. Lett. 89 106801 (2002).CrossRefGoogle Scholar
59. Nakanishi, T., Bachtold, A., and Dekker, C., Phys. Rev. B 66 073307 (2002).CrossRefGoogle Scholar
60. Collins, P., Arnold, M., and Avouris, P., Science 292 (2001) p. 706.CrossRefGoogle Scholar
61. Nantero Inc. press release,“Nantero Inc. Creates an Array of Ten Billion Nanotube Bits on Single Wafer,” http://www.nantero.com/press.html (accessed February 2004).Google Scholar
62. Braunschweig, C., “Nano Nonsense,” Venture Capital J., http://www.ventureeconomics.com/vcj/protected/1031551048675.html (accessed February 2004).Google Scholar