Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T20:44:40.289Z Has data issue: false hasContentIssue false

Nanostructured materials for improved photoconversion

Published online by Cambridge University Press:  22 March 2011

Alberto Franceschetti*
Affiliation:
National Renewable Energy Laboratory, USA; [email protected]
Get access

Abstract

The drive to make solar energy competitive with conventional energy sources has prompted the investigation of new photoconversion technologies, often referred to as third-generation photovoltaics, which have both lower cost and improved efficiency compared to existing technologies. In that framework, nanostructured materials, such as nanocrystals, nanowires, and nanotubes, occupy a prominent place because of their potential advantages over crystalline or thin-film photovoltaics technologies—high tunability of the bandgap via size control, strong band-edge absorption coefficient, efficient multiple-exciton generation by a single photon, and possibly high up-conversion efficiency. The ability to control the size, shape, composition, and surface termination of nanostructures provides new degrees of freedom that are inaccessible in conventional solar cell architectures. At the same time, the ability to explore this vast configuration space by synthesis and characterization alone is limited, which makes computational interrogation of the electronic and optical properties of nanostructures particularly valuable. In recent years, the convergence of new algorithms and new computational capabilities has made it possible for the first time to perform accurate electronic-structure calculations for large nanostructures. This article reviews recent developments in both semi-empirical and first-principles atomistic electronic structure methods that have led to accurate predictions and to a better understanding of carrier generation, relaxation, and recombination processes in nanostructured materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Slaoui, A., Collins, R.T., MRS Bull. 32, 211 (2007).CrossRefGoogle Scholar
2.Shockley, W., Queisser, H.J., J. Appl. Phys. 32, 510 (1961).CrossRefGoogle Scholar
3.Pietryga, J.M., Schaller, R.D., Werder, D., Stewart, M.H., Klimov, V.I., Hollingsworth, J.A., J. Am. Chem. Soc. 126, 11752 (2004).CrossRefGoogle Scholar
4.Kim, S., Fisher, B., Eisler, H.J., Bawendi, M.G., J. Am. Chem. Soc. 125, 11466 (2003).CrossRefGoogle Scholar
5.Xiang, J., Lu, W., Hu, Y., Yan, H., Lieber, C.M., Nature 441, 489 (2006).CrossRefGoogle Scholar
6.Schaller, R.D., Klimov, V.I., Phys. Rev. Lett. 92, 186601 (2004).CrossRefGoogle Scholar
7.Ellingson, R.J., Beard, M.C., Johnson, J.C., Yu, P., Micic, O.I., Nozik, A.J., Shabaev, A., Efros, Al.L., Nano Lett. 5, 865 (2005).CrossRefGoogle Scholar
8.Schaller, R.D., Agranovich, V.M., Klimov, V.I., Nat. Phys. 1, 189 (2005).CrossRefGoogle Scholar
9.Wang, S., Khafizov, M., Tu, X., Zheng, M., Krauss, T.D., Nano Lett. 10, 2381 (2010).CrossRefGoogle Scholar
10.Nozik, A.J., Inorg. Chem. 44, 6893 (2005).CrossRefGoogle Scholar
11.Klimov, V.I., McBranch, D.W., Phys. Rev. Lett. 80, 4028 (1998).CrossRefGoogle Scholar
12.Hendry, E., Koeberg, M., Wang, F., Zhang, H., de Mello Donega, C., Vanmaekelbergh, D., Bonn, M., Phys. Rev. Lett. 96, 057408 (2006).CrossRefGoogle Scholar
13.Pandey, A., Guyot-Sionnest, P., Science 322, 929 (2008).CrossRefGoogle Scholar
14.Marti, A., Antolin, E., Stanley, C.R., Farmer, C.D., Lopez, N., Diaz, P., Linares, P.G., Luque, A., Phys. Rev. Lett. 97, 247701 (2006).CrossRefGoogle Scholar
15.Chelikowsky, J.R., Saad, Y., Chan, T.L., Tiago, M.L., Zayak, A.T., Zhou, Y.K., J. Comput. Theor. Nanosci. 6, 1247 (2009).CrossRefGoogle Scholar
16.Zhao, Y., Kim, Y.H., Du, M.H., Zhang, S.B., Phys. Rev. Lett. 93, 015502 (2004).CrossRefGoogle Scholar
17.Sánchez-Portal, D., Artacho, E., Soler, J.M., Rubio, A., Ordejon, P., Phys. Rev. B 59, 12678 (1999).CrossRefGoogle Scholar
18.Puzder, A., Williamson, A.J., Gygi, F., Galli, G., Phys. Rev. Lett. 92, 217401 (2004).CrossRefGoogle Scholar
19.Degoli, E., Cantele, G., Luppi, E., Magri, R., Ninno, D., Bisi, O., Ossicini, S., Phys. Rev. B 69, 155411 (2004).CrossRefGoogle Scholar
20.Franceschetti, A., Phys. Rev. B 78, 075418 (2008).CrossRefGoogle Scholar
21.Leitsmann, R., Bechstedt, F., ACS Nano 11, 3505 (2009).CrossRefGoogle Scholar
22.Burke, K., Werschnik, J., Gross, E.K.U., J. Chem. Phys. 123, 062206 (2005).CrossRefGoogle Scholar
23.Vasiliev, I., Ogut, S., Chelikowsky, J.R., Phys. Rev. Lett. 86, 1813 (2001).CrossRefGoogle Scholar
24.Benedict, L.X., Puzder, A., Williamson, A.J., Grossman, J.C., Galli, G., Klepeis, J.E., Raty, J.Y., Pankratov, O., Phys. Rev. B 68, 085310 (2003).CrossRefGoogle Scholar
25.Ramos, L.E., Paier, J., Kresse, G., Bechstedt, F., Phys. Rev. B 78, 195423 (2008).CrossRefGoogle Scholar
26.Troparevsky, M.C., Kronik, L., Chelikowsky, J.R., Phys. Rev. B 65, 033311 (2001).CrossRefGoogle Scholar
27.Lopez del Puerto, M., Tiago, M.L., Chelikowsky, J.R., Phys. Rev. Lett. 97, 096401 (2006).CrossRefGoogle Scholar
28.Craig, C.F., Duncan, W.R., Prezhdo, O.V., Phys. Rev. Lett. 95, 163001 (2005).CrossRefGoogle Scholar
29.Hybertsen, M.S., Louie, S.G., Phys. Rev. Lett. 55, 1418 (1985).CrossRefGoogle Scholar
30.Strinati, G., Phys. Rev. B 29, 5718 (1984).CrossRefGoogle Scholar
31.Niquet, Y.M., Delerue, C., Allan, G., Lannoo, M., Phys. Rev. B 62, 5109 (2000).CrossRefGoogle Scholar
32.Franceschetti, A., Fu, H., Wang, L.W., Zunger, A., Phys. Rev. B 60, 1819 (1999).CrossRefGoogle Scholar
33.Franceschetti, A., Zunger, A., Phys. Rev. B 62, 2614 (2000).CrossRefGoogle Scholar
34.Wang, L.W., Zunger, A., J. Phys. Chem. 98, 2158 (1994).CrossRefGoogle Scholar
35.Wang, L.W., Phys. Rev. Lett. 88, 256402 (2002).CrossRefGoogle Scholar
36.Franceschetti, A., Troparevsky, M.C., J. Comput. Theor. Nanosci. 6, 1272 (2009).CrossRefGoogle Scholar
37.Franceschetti, A., Zhang, Y., Phys. Rev. Lett. 100, 136805 (2008).CrossRefGoogle Scholar
38.Wang, L.W., Califano, M., Zunger, A., Franceschetti, A., Phys. Rev. Lett. 91, 056404 (2003).CrossRefGoogle Scholar
39.Nozik, A.J., Physica E 14, 115 (2002).CrossRefGoogle Scholar
40.Aharoni, A., Oron, D., Banin, U., Rabani, E., Jortner, J., Phys. Rev. Lett. 100, 057404 (2008).CrossRefGoogle Scholar
41.Kilina, S.V., Kilin, D.S., Prezhdo, O.V., ACS Nano 3, 93 (2009).CrossRefGoogle Scholar
42.Allan, G., Delerue, C., Phys. Rev. B 73, 205423 (2006).CrossRefGoogle Scholar
43.Rabani, E., Baer, R., Nano Lett. 8, 4488 (2008).CrossRefGoogle Scholar
44.Lin, Z., Franceschetti, A., Lusk, M.T., ACS Nano (accepted).Google Scholar
45.Beard, M.C., Midgett, A.G., Hanna, M.C., Luther, J.M., Hughes, B.K., Nozik, A.J., Nano Lett. 10, 3019 (2010).CrossRefGoogle Scholar
46.Klimov, V.I., Mikhailovsky, A.A., McBranch, D.W., Leatherdale, C.A., Bawendi, M.G., Science 11, 1011 (2000).CrossRefGoogle Scholar
47.Zhang, Y., Wang, L.W., Mascarenhas, A., Nano Lett. 7, 1264 (2007).CrossRefGoogle Scholar
48.Wu, Z.G., Neaton, J.B., Grossman, J.C., Nano Lett. 9, 2418 (2009).CrossRefGoogle Scholar