Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T01:51:05.951Z Has data issue: false hasContentIssue false

Nanoelectronics and nanosensors for space exploration

Published online by Cambridge University Press:  08 October 2015

M. Meyyappan
Affiliation:
NASA Ames Research Center, USA; [email protected]
Jessica E. Koehne
Affiliation:
NASA Ames Research Center, USA; [email protected]
Jin-Woo Han
Affiliation:
NASA Ames Research Center, USA; [email protected]
Get access

Abstract

Space missions have unique requirements for payloads of electronics, sensors, instruments, and other components in terms of mass, footprint, power consumption, and resistance to various types of radiation. Nanomaterials offer the potential for future radiation-hardened or radiation-immune electronics. Gas-sensing needs in planetary exploration and crew-cabin air-quality monitoring are currently being met by bulky instruments. Routine health checkups of astronauts and testing of water in space habitats are being done on a delayed basis by bringing samples back to Earth. Instead, nanomaterials can be used to construct ultrasmall, postage-stamp-sized gas/vapor sensors with selective discrimination and also lab-on-a-chip biosensors for water-quality monitoring and crew health monitoring.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

“Nanotechnology in Space Exploration: Report of the National Nanotechnology Initiative Workshop, August 24–26, 2004” (National Nanotechnology Coordination Office, Arlington, VA), available at http://www.nano.gov/sites/default/files/pub_resource/space_exploration_rpt_0.pdf (accessed August 2015).Google Scholar
Iniewski, K., Radiation Effects in Semiconductors (CRC Press, Boca Raton, FL, 2010).Google Scholar
Chavan, A., Reddy, P.D., Int. J. Res. Eng. Technol. 3, 452 (2014).Google Scholar
Kemp, E.R., “Proton Damage Effects on Carbon Nanotube Field Effect Transistors,”MS thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH (2014).Google Scholar
Cress, C.D., Schauerman, C.M., Landi, B.J., Messenger, S.R., Raffaelle, R.P., Walters, R.J., J. Appl. Phys. 107, 014316 (2010).CrossRefGoogle Scholar
Vitusevich, S.A., Sydoruk, V.A., Petrychuk, M.V., Danilchenko, B.A., Klein, N., Offenhäusser, A., Ural, A., Bosman, G., J. Appl. Phys. 107, 063701 (2010).CrossRefGoogle Scholar
Sydoruk, V.A., Goß, K., Meyer, C., Petrychuk, M.V., Danilchenko, B.A., Li, J., Pud, S., Vitusevich, S., “Noise Properties of Carbon Nanotube FETs with Top and Side-Gate Geometries: Effect of Gamma Irradiation,” presented at the 22nd International Conference on Noise and Fluctuations, Montpellier, France, June 24–28, 2013, http://dx.doi.org/10.1109/ICNF.2013.6578937.CrossRefGoogle Scholar
Sydoruk, V.A., Goß, K., Meyer, C., Petrychuk, M.V., Danilchenko, B.A., Weber, P., Stampfer, C., Li, J., Vitusevich, S.A., Nanotechnology 25, 035703 (2014).CrossRefGoogle Scholar
Esqueda, I.S., Cress, C.D., Che, Y., Cao, Y., Zhou, C., J. Appl. Phys. 115, 054506 (2014).CrossRefGoogle Scholar
Cress, C.D., Memarrow, J.J., Robinson, J.T., Friedman, A.L., Landi, B.J., IEEE Trans. Electron Devices 57, 3040 (2010).Google Scholar
Bernacki, S., Hunt, K., Tyson, S., Hudgens, S., Pashmakov, B., Czubatyj, W., IEEE Trans. Nucl. Sci. 47, 2528 (2000).CrossRefGoogle Scholar
Rauox, S., Annu. Rev. Mater. Res. 39, 25 (2009).CrossRefGoogle Scholar
Bez, R., Pirovano, A., Mater. Sci. Semicond. Process 7, 349 (2004).CrossRefGoogle Scholar
Popov, A., Phys. Status Solidi B 246, 1837 (2009).CrossRefGoogle Scholar
Chung, A., Deen, J., Lee, J.S., Meyyappan, M., Nanotechnology 21, 412001 (2010).CrossRefGoogle Scholar
Lee, S.H., Ko, D.K., Jung, Y., Agarwal, R., Appl. Phys. Lett. 89, 223116 (2006).CrossRefGoogle Scholar
Lee, S.H., Jung, Y., Chung, H.S., Jennings, A.T., Agarwal, R., Physica E 40, 2474 (2008).CrossRefGoogle Scholar
Sun, X.H., Yu, B., Ng, G., Meyyappan, M., J. Phys. Chem. C 111, 2421 (2007).CrossRefGoogle Scholar
Yu, B., Ju, S., Sun, X.H., Ng, G., Nguyen, T.D., Meyyappan, M., Janes, D.B., Appl. Phys. Lett. 91, 133119 (2007).CrossRefGoogle Scholar
Yu, B., Sun, X.H., Ju, S., Janes, D.B., Meyyappan, M., IEEE Trans. Nanotechnol. 7, 496 (2008).Google Scholar
Jin, B., Lim, T., Ju, S., Latypov, M.I., Kim, H.S., Meyyappan, M., Lee, J.S., Nanotechnology 25, 055205 (2014).CrossRefGoogle Scholar
Park, S.S., Park, D.I., Hahm, S.H., Lee, J.H., Choi, H.C., Lee, J.H., IEEE Trans. Electron Devices 46, 1283 (1999).CrossRefGoogle Scholar
Pescini, L., Tilke, A., Blick, R.H., Lorenz, H., Kotthaus, J.P., Eberhardt, W., Kern, D., Adv. Mater. 13, 1780 (2001).3.0.CO;2-E>CrossRefGoogle Scholar
Han, J.W., Oh, J.S., Meyyappan, M., Appl. Phys. Lett. 100, 213505 (2012).CrossRefGoogle Scholar
Han, J.W., Oh, J.S., Meyyappan, M., IEEE Trans. Nanotechnol. 13 (3), 464 (2014).CrossRefGoogle Scholar
Daniels, J.S., Pourmand, N., Electroanalysis 19, 1239 (2007).CrossRefGoogle Scholar
Gooding, J., Electroanalysis 14, 1149 (2002).3.0.CO;2-8>CrossRefGoogle Scholar
Star, A., Gabriel, J.C.P., Bradley, K., Gruner, G., Nano Lett. 3, 459 (2003).CrossRefGoogle Scholar
Allen, B.L., Kichambare, P.D., Star, A., Adv. Mater. 19, 1439 (2007).CrossRefGoogle Scholar
Ohno, Y., Maehashi, K., Matsumoto, K., J. Am. Chem. Soc. 132, 18012 (2010).CrossRefGoogle Scholar
Li, C., Lei, B., Zhang, D., Liu, X., Hang, S., Tang, T., Rouhanizadeh, M., Hsiai, T., Zhou, C.W., Appl. Phys. Lett. 83, 4014 (2003).CrossRefGoogle Scholar
Huang, T., Dong, X., Liu, Y., Li, L.J., Chen, P., J. Mater. Chem. 21, 12358 (2011).CrossRefGoogle Scholar
Rim, T., Kim, K.Y., Baek, C.H., Jeong, Y.H., Lee, J.S., Meyyappan, M., J. Nanosci. Nanotechnol. 14, 273 (2014).CrossRefGoogle Scholar
Kim, K., Rim, T., Park, C., Kim, D.H., Meyyappan, M., Lee, J.S., Nanotechnology 25, 345501 (2014).CrossRefGoogle Scholar
Lin, Y., Lu, F., Ren, Z., Nano Lett. 4, 191 (2004).CrossRefGoogle Scholar
Hu, C., Hu, S., J. Sens. 2009, 187615 (2009).CrossRefGoogle Scholar
Ang, P.K., Chen, W., Wee, A.T.S., Loh, K.P., J. Am. Chem. Soc. 130, 14392 (2008).CrossRefGoogle Scholar
Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I.A., Lin, Y., Electroanalysis 22, 1027 (2010).CrossRefGoogle Scholar
Wu, P., Shao, Q., Hu, Y., Jin, J., Yin, Y., Zhang, H., Cai, C., Electrochim. Acta 55, 8606 (2010).CrossRefGoogle Scholar
Chen, W., Yao, H., Tzang, C.H., Zhu, J., Yang, M., Lee, S.T., Appl. Phys. Lett. 88, 213104 (2006).CrossRefGoogle Scholar
Patil, S.J., Zajac, A., Zhukov, T., Bhansali, S., Sens. Actuators B 129, 859 (2008).CrossRefGoogle Scholar
Pal, S., Alocilja, E.C., Downes, F.P., Biosens. Bioelectron. 22, 2329 (2007).CrossRefGoogle Scholar
Koehne, J., Chen, H., Li, J., Cassell, A.M., Ye, Q., Ng, H.T., Han, J., Meyyappan, M., Nanotechnology 14, 1239 (2003).CrossRefGoogle Scholar
Koehne, J.E., Chen, H., Cassell, A.M., Ye, Q., Han, J., Meyyappan, M., Li, J., Clin. Chem. 50 (10), 1886 (2004).CrossRefGoogle Scholar
Arumugam, P.U., Chen, H., Siddiqui, S., Weinrich, J.A.P., Jejelowo, A., Li, J., Meyyappan, M., Biosens. Bioelectron. 24, 2818 (2009).CrossRefGoogle Scholar
Periyakaruppan, A., Gandhiraman, R.P., Meyyappan, M., Koehne, J.E., Anal. Chem. 85, 3858 (2013).CrossRefGoogle Scholar
Gupta, R.K., Periyakaruppan, A., Koehne, J.E., Meyyappan, M., Biosens. Bioelectron. 59, 112 (2014).CrossRefGoogle Scholar
Ryan, M.A., Zhou, H., Buehler, M.G., Manatt, K.S., Mowrey, V.S., Jackson, S.P., Kisor, A.K., Shevade, A.V., Homer, M.L., IEEE Sens. J. 4, 337 (2004).CrossRefGoogle Scholar
Cinke, M., Li, J., Chen, B., Cassell, A., Delzeit, L., Han, J., Meyyappan, M., Chem. Phys. Lett. 365, 69 (2002).CrossRefGoogle Scholar
Kauffman, D.R., Star, A., Angew. Chem. 47, 6550 (2008).CrossRefGoogle Scholar
Star, A., Joshi, V., Skarupo, S., Thomas, D., Gabriel, J.P., J. Phys. Chem. C 110, 21014 (2006).CrossRefGoogle Scholar
Bekyarova, E., Davis, M., Burch, T., Itkis, M.E., Zhao, B., Sunshine, S., Haddon, R.C., J. Phys. Chem. B 108, 19717 (2004).CrossRefGoogle Scholar
Wang, R., Zhang, D., Zhang, Y., Liu, C., J. Phys. Chem. B 110, 18267 (2006).CrossRefGoogle Scholar
Ueda, T., Bhuiyan, M.M.H., Norimatsu, H., Katsuki, S., Ikegami, T., Mitsugi, F., Physica E 40, 2272 (2008).CrossRefGoogle Scholar
Kumar, M.K., Reddy, A.L.M., Ramaprabhu, S., Sens. Actuators B 130, 653 (2008).CrossRefGoogle Scholar
Penza, M., Rossi, R., Alvisi, M., Serra, E., Nanotechnology 21, 105501 (2010).CrossRefGoogle Scholar
Lu, Y., Meyyappan, M., Li, J., Nanotechnology 22, 055502 (2011).CrossRefGoogle Scholar
Fowler, J.D., Allen, M.J., Tung, V.C., Yang, Y., Kaner, R.B., Weiller, B.H., ACS Nano 3, 301 (2009).CrossRefGoogle Scholar
Wu, W., Liu, Z., Jauregui, L.A., Yu, Q., Pillai, R., Cao, H., Bao, J., Chen, Y.P., Pei, S.S., Sens. Actuators B 150, 296 (2010).CrossRefGoogle Scholar
Joshi, R.K., Gomez, H., Alvi, F., Kumar, A., J. Phys. Chem. C 114, 6610 (2010).CrossRefGoogle Scholar
Li, W., Geng, X., Guo, Y., Rong, J., Gong, Y., Wu, L., Zhang, X., Li, P., Xu, J., Cheng, G., Sun, M., Liu, L., ACS Nano 5, 6955 (2011).CrossRefGoogle Scholar
Lu, G., Ocala, L.E., Chen, J., Nanotechnology 20, 445502 (2009).CrossRefGoogle Scholar
Meyyappan, M., Sunkara, M.K., “Inorganic Nanowires: Applications, Properties, and Characterization” (CRC Press, Boca Raton, FL), chap. 14 (2010).Google Scholar
Li, J., Lu, Y., Ye, Q., Delzeit, L., Meyyappan, M., Electrochem. Solid-State Lett. 8 (11), H100 (2005).CrossRefGoogle Scholar
Lu, Y., Partridge, C., Meyyappan, M., Li, J., J. Electroanal. Chem. 593, 105 (2006).CrossRefGoogle Scholar
Li, J., Lu, Y., Meyyappan, M., IEEE Sens. J. 6 (5), 1047 (2006).CrossRefGoogle Scholar
Lu, Y., Meyyappan, M., Li, J., Small 7, 1714 (2011).CrossRefGoogle Scholar
Hannon, A., Lu, Y., Hong, H., Li, J., Meyyappan, M., Sens. Lett. 12, 1469 (2014).CrossRefGoogle Scholar
Hannon, A., Lu, Y., Li, J., Meyyappan, M., J. Sens. Sens. Syst. 3, 349 (2014).CrossRefGoogle Scholar