Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T03:25:15.708Z Has data issue: false hasContentIssue false

Nanodiode-based hot electrons: Influence on surface chemistry and catalytic reactions

Published online by Cambridge University Press:  10 January 2020

Jeong Young Park
Affiliation:
Center for Nanomaterials and Chemical Reactions, Institute for Basic Science; and Department of Chemistry, Korea Advanced Institute of Science and Technology, Republic of Korea; [email protected]
Gabor A. Somorjai
Affiliation:
University of California, Berkeley, USA; [email protected]
Get access

Abstract

Understanding fundamental mechanisms for surface electronic excitation is of great importance in surface chemistry. Charge transport through metal–oxide interfaces plays a significant role in heterogeneous catalysis. Over the last several decades, a number of experimental and theoretical results suggest that this charge flow through metal–support interfaces leads to catalytic enhancement often observed in mixed catalysts. Direct measurement of charge flow on actual catalysts is a rather challenging task because it requires the use of an electronic circuit. This approach has been enabled by a catalytic nanodiode that is mainly composed of a catalytic metal and semiconducting oxides that form a Schottky contact. In this article, we describe the advances in this approach. We show that there is close connection between the phenomena of hot-electron creation and chemical reaction that occur at both gas–solid and liquid–solid interfaces. The intensity of hot-electron flow is well correlated with the turnover rates of corresponding reactions, which opens the possibility for developing new operando methodologies to monitor catalytic reactions as well as a novel scheme for the electronic control of chemical reactions.

Type
Materials for Hot-Carrier Chemistry
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Somorjai, G.A., Park, J.Y., Angew. Chem. Int. Ed. Engl. 47, 9212 (2008).CrossRefGoogle Scholar
Park, J.Y., Current Trends of Surface Science and Catalysis (Springer, New York, 2014).CrossRefGoogle Scholar
Gunasooriya, G.T.K.K., Seebauer, E.G., Saeys, M., ACS Catal. 7, 1966 (2017).CrossRefGoogle Scholar
Lykhach, Y., Kozlov, S.M., Skala, T., Tovt, A., Stetsovych, V., Tsud, N., Dvorak, F., Johanek, V., Neitzel, A., Myslivecek, J., Fabris, S., Matolin, V., Neyman, K.M., Libuda, J., Nat. Mater. 15, 284 (2016).CrossRefGoogle Scholar
Willinger, M.G., Zhang, W., Bondarchuk, O., Shaikhutdinov, S., Freund, H.-J., Schlögl, R., Angew. Chem. Int. Ed. Engl. 53, 5998 (2014).CrossRefGoogle Scholar
Henry, C.R., Surf. Sci. Rep. 31, 231 (1998).CrossRefGoogle Scholar
Schwab, G.-M., Koller, K., J. Am. Chem. Soc. 90, 3078 (1968).CrossRefGoogle Scholar
Schwab, G.-M., Surf. Sci. 13, 198 (1969).CrossRefGoogle Scholar
Somorjai, G.A., Frei, H., Park, J.Y., J. Am. Chem. Soc. 131, 16589 (2009).CrossRefGoogle Scholar
Boffa, A., Lin, C., Bell, A.T., Somorjai, G.A., J. Catal. 149, 149 (1994).CrossRefGoogle Scholar
Tauster, S.J., Acc. Chem. Res. 20, 389 (1987).CrossRefGoogle Scholar
Nienhaus, H., Surf. Sci. Rep. 45, 1 (2002).CrossRefGoogle Scholar
Ogawa, S., Petek, H., Surf. Sci. 363, 313 (1996).CrossRefGoogle Scholar
Hertel, T., Knoesel, E., Wolf, M., Ertl, G., Phys. Rev. Lett. 76, 535 (1996).CrossRefGoogle Scholar
Nienhaus, H., Bergh, H.S., Gergen, B., Majumdar, A., Weinberg, W.H., McFarland, E.W., Surf. Sci. 445, 335 (2000).CrossRefGoogle Scholar
Gergen, B., Nienhaus, H., Weinberg, W.H., McFarland, E.W., Science 294, 2521 (2001).CrossRefGoogle Scholar
Park, J.Y., Somorjai, G.A., J. Vac. Sci. Technol. B 24, 1967 (2006).CrossRefGoogle Scholar
Park, J.Y., Somorjai, G.A., ChemPhysChem 7, 1409 (2006).CrossRefGoogle Scholar
Park, J.Y., Renzas, J.R., Hsu, B.B., Somorjai, G.A., J. Phys. Chem. C 111, 15331 (2007).CrossRefGoogle Scholar
Park, J.Y., Baker, L.R., Somorjai, G.A., Chem. Rev. 115, 2781 (2015).CrossRefGoogle Scholar
Somorjai, G.A., Catal. Lett. 101, 1 (2004).CrossRefGoogle Scholar
Ji, X., Zuppero, A., Gidwani, J.M., Somorjai, G.A., Nano Lett. 5, 753 (2005).CrossRefGoogle Scholar
Hervier, A., Renzas, J.R., Park, J.Y., Somorjai, G.A., Nano Lett. 9, 3930 (2009).CrossRefGoogle Scholar
Nedrygailov, I.I., Park, J.Y., Chem. Phys. Lett. 645, 5 (2016).CrossRefGoogle Scholar
Nienhaus, H., Gergen, B., Weinberg, W.H., McFarland, E.W., Surf. Sci. 514, 172 (2002).CrossRefGoogle Scholar
Sze, S.M., Ng, K.K., Physics of Semiconductor Devices (Wiley, Hoboken, NJ, 2006).CrossRefGoogle Scholar
Park, J.Y., Lee, H., Renzas, J.R., Zhang, Y., Somorjai, G.A., Nano Lett. 8, 2388 (2008).CrossRefGoogle Scholar
Lee, H., Nedrygailov, I.I., Lee, C., Somorjai, G.A., Park, J.Y., Angew. Chem. Int. Ed. Engl. 54, 2340 (2015).CrossRefGoogle Scholar
Schierbaum, K., El Achhab, M., Phys. Status Solidi A 208, 2796 (2011).CrossRefGoogle Scholar
Cakabay, Ö., El Achhab, M., Schierbaum, K., Appl. Phys. A 118, 1127 (2014).CrossRefGoogle Scholar
Karpov, E.G., Hashemian, M.A., Dasari, S.K., J. Phys. Chem. C 117, 15632 (2013).CrossRefGoogle Scholar
Hashemian, M.A., Palacios, E., Nedrygailov, I.I., Diesing, D., Karpov, E.G., ACS Appl. Mater. Interfaces 5, 12375 (2013).CrossRefGoogle Scholar
Ray, N.J., Hashemian, M.A., Karpov, E.G., ACS Appl. Mater. Interfaces 7, 27749 (2015).CrossRefGoogle Scholar
Jeon, B., Lee, H., Goddeti, K.C., Park, J.Y., ACS Appl. Mater. Interfaces 11, 15152 (2019).CrossRefGoogle Scholar
Goddeti, K.C., Lee, H., Jeon, B., Park, J.Y., Chem. Commun. 54, 8968 (2018).CrossRefGoogle Scholar
Goddeti, K.C., Lee, C., Lee, Y.K., Park, J.Y., Sci. Rep. 8, 7330 (2018).CrossRefGoogle Scholar
Lee, H., Yoon, S., Jo, J., Jeon, B., Hyeon, T., An, K., Park, J.Y., Faraday Discuss. 214, 353 (2019).CrossRefGoogle Scholar
Lee, H., Lim, J., Lee, C., Back, S., An, K., Shin, J.W., Ryoo, R., Jung, Y., Park, J.Y., Nat. Commun. 9, 2235 (2018).CrossRefGoogle Scholar
Renzas, J.R., Somorjai, G.A., J. Phys. Chem. C 114, 17660 (2010).CrossRefGoogle Scholar
Lee, S.W., Park, W., Lee, H., Song, H.C., Jung, Y., Park, J.Y., ACS Catal . 9, 8424 (2019).CrossRefGoogle Scholar
Lee, H., Nedrygailov, I.I., Lee, S.W., Park, J.Y., Top. Catal. 61 ,915 (2018).CrossRefGoogle Scholar
Lee, H., Nedrygailov, I.I., Lee, Y.K., Lee, C., Choi, H., Choi, J.S., Choi, C.-G., Park, J.Y., Nano Lett . 16, 1650 (2016).CrossRefGoogle Scholar
Nedrygailov, I.I., Lee, C., Moon, S.Y., Lee, H., Park, J.Y., Angew. Chem. Int. Ed. Engl. 55, 10859 (2016).CrossRefGoogle Scholar
Zaera, F., Chem. Rev. 112, 2920 (2012).CrossRefGoogle Scholar
Nedrygailov, I.I., Lee, C., Moon, S.Y., Lee, H., Park, J.Y., Angew. Chem. Int. Ed. Engl. 128, 11017 (2016).CrossRefGoogle Scholar
Nedrygailov, I.I., Lee, C., Moon, S.Y., Lee, H., Park, J.Y., Rev. Sci. Instrum. 87, 114101 (2016).CrossRefGoogle Scholar
Lee, S.H., Nedrygailov, I.I., Oh, S., Park, J.Y., Catal. Today 303, 282 (2018).CrossRefGoogle Scholar
Campos-Martin, J.M., Blanco-Brieva, G., Fierro, J.L.G., Angew. Chem. Int. Ed. Engl. 45, 6962 (2006).CrossRefGoogle Scholar
Wilson, N.M., Flaherty, D.W., J. Am. Chem. Soc. 138, 574 (2015).CrossRefGoogle Scholar
Knight, M.W., Sobhani, H., Nordlander, P., Halas, N.J., Science 332, 702 (2011).CrossRefGoogle Scholar
Lee, Y.K., Lee, H., Lee, C., Hwang, E., Park, J.Y., J. Phys. Condens. Matter 28, 254006 (2016).CrossRefGoogle Scholar
Lee, Y.K., Jung, C.H., Park, J., Seo, H., Somorjai, G.A., Park, J.Y., Nano Lett. 11 (10), 4251 (2011).CrossRefGoogle Scholar
Park, Y., Choi, J., Lee, C., Cho, A.-N., Cho, D.W., Park, N.-G., Ihee, H., Park, J.Y., Nano Lett . 19, 5489 (2019).CrossRefGoogle Scholar
Moon, S.Y., Song, H.C., Gwag, E.H., Nedrygailov, I.I., Lee, C., Kim, J.J., Doh, W.H., Park, J.Y., Nanoscale 10, 22180 (2018).CrossRefGoogle Scholar
Linic, S., Christopher, P., Ingram, D.B., Nat. Mater. 10, 911 (2011).CrossRefGoogle Scholar
Halas, N.J., Lal, S., Chang, W.-S., Link, S., Nordlander, P., Chem. Rev. 111, 3913 (2011).CrossRefGoogle Scholar