Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T13:07:18.219Z Has data issue: false hasContentIssue false

Multiscale-Multiphysics Modeling of Radiation-Damaged Materials: Embrittlement of Pressure-Vessel Steels

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

Radiation damage, and its attendant effect on a wide spectrum of materials properties, is a central issue in many advanced technologies ranging from ion-beam processing to the development of fusion power. Indeed, the various challenges presented by irradiation effects are too numerous to discuss in this brief article.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Radiation Embrittlement of Reactor Vessel Materials, Regulatory Guide 1.99, Rev. 2 (U.S. Nuclear Regulatory Commission, Washington, DC, May 1988).Google Scholar
2Odette, G.R.Scripta Metall. 11 (1983) p. 1183.CrossRefGoogle Scholar
3Odette, G.R. in Microstructure of Irradiated Materials, edited by Robertson, I.M.Rehn, L.E.Zinkle, S.J. and Phythian, W.J. (Mater. Res. Soc. Symp. Proc. 373, Pittsburgh, 1995) p.137.Google Scholar
4Odette, G.R.Liu, C.L. and Wirth, B.D. in Microstructure Evolution During Irradiation, edited by Robertson, I.M.Was, G.S.Hobbs, L.W. and Rubia, T. Diaz de la (Mater. Res. Soc. Symp. Proc. 439, Pittsburgh, 1997) p.457.Google Scholar
5Odette, G.R. and Wirth, B.D.J. Nucl. Mater. 251 (1997) p.157.CrossRefGoogle Scholar
6Odette, G.R. and Lucas, G.E.Radiat. Eff. Defects Solids 144 (1998) p.189.CrossRefGoogle Scholar
7Odette, G.R. in Neutron Irradiation Effects in Reactor Pressure Vessel Steels and Weldments, IAEAIWG-LMNPP-98/3, edited by Davies, M. (International Atomic Energy Agency, Vienna, 1998) p.438.Google Scholar
8Eason, E.D.Wright, J.E. and Odette, G.R.Improved Embrittlement Correlations for Reactor Pressure Vessel Steels, NUREG/CR-6551 (U.S. Nuclear Regulatory Commission, Washington, DC, 2000).Google Scholar
9Greenwood, L.R. and Smither, R.K.technical report, ANL/FPP-TM-197 (Argonne National Laboratory, Argonne, IL, 1985).Google Scholar
10Calder, A.F. and Bacon, D.J.J. Nucl. Mater. 207 (1993) p.25.CrossRefGoogle Scholar
11Stoller, R.E.Odette, G.R. and Wirth, B.D.J.Nucl. Mater. 251 (1997) p.49.CrossRefGoogle Scholar
12Averback, R.S. and Rubia, T. Diaz de la, Solid State Phys. 51 (1998) p.281.CrossRefGoogle Scholar
13Stoller, R.E.Nucl. Eng. Des. 195 (2000) p.129.CrossRefGoogle Scholar
14Bacon, D.J.Gao, F. and Osetsky, Y.N.J.Comput.-Aided Mater. Des. 6 (1999) p.225.CrossRefGoogle Scholar
15Stoller, R.E. in Microstructure of Irradiated Materials, edited by Robertson, I.M.Rehn, L.E.Zinkle, S.J. and Phythian, W.J. (Mater. Res. Soc. Symp. Proc. 373, Pittsburgh, 1995) p.21.Google Scholar
16Soneda, N. and Rubia, T. Diaz de la, Philos. Mag. A 78 (1998) p.995.CrossRefGoogle Scholar
17Wirth, B.D.Odette, G.R.Maroudas, D. and Lucas, G.E.J.Nucl. Mater. 276 (2000) p.33.CrossRefGoogle Scholar
18Osetsky, Y.N.Bacon, D.J.Serra, A.Singh, B.N. and Golubov, S.I.Y.J.Nucl. Mater. 276 (2000) p.65.CrossRefGoogle Scholar
19Caturla, M.J.Soneda, N.Alonso, E.A.Wirth, B.D. and Rubia, T. Diaz de la, J. Nucl. Mater. 276 (2000) p.13.CrossRefGoogle Scholar
20Wirth, B.D. “On the Character of Nano-scale Features in Reactor Pressure Vessel Steels Under Neutron Irradiation,” PhD dissertation, University of California—Santa Barbara, 1998.Google Scholar
21Wirth, B.D. and Odette, G.R. in Microstruc-tural Processes in Irradiated Materials, edited by Zinkle, S.J.Lucas, G.E.Ewing, R.C. and Williams, J.S. (Mater. Res. Soc. Symp. Proc. 540, Warrendale, PA, 1999) p.637.Google Scholar
22Marian, J.Wirth, B.D.Perlado, J.M.Odette, G.R. and Rubia, T. Diaz de la, in Microstruc-tural Processes in Irradiated Materials, edited by Lucas, G.E.Snead, L.L.Kirk, M.A. and El-liman, R.G., (Mater. Res. Soc. Symp. Proc. 650, Warrendale, PA, 2001) in press.Google Scholar
23Mader, E.V. “Kinetics of Irradiation Embrit-tlement and the Post-Irradiation Annealing of Nuclear Reactor Pressure Vessel Steels,” PhD dissertation, University of California—Santa Barbara, 1995.Google Scholar
24Foreman, A.J.E. and Makin, M.J.Can. J. Phys. 45 (1967) p.511.CrossRefGoogle Scholar
25Harry, T. and Bacon, D.J. in Microstructure Evolution During Irradiation, edited by Robertson, I.M.Was, G.S.Hobbs, L.W. and Rubia, T. Diaz de la (Mater. Res. Soc. Symp. Proc. 439, Pittsburgh, 1997) p.495.Google Scholar
26Jumel, S. and Van-Duysen, J.C. (private communication, 2000).Google Scholar
27Ghoniem, N.M. and Sun, L.Z.Phys. Rev. B 60 (1999) p.128.CrossRefGoogle Scholar
28Ghoniem, N.M.Tong, S.-S. and Sun, L.Z.Phys. Rev. B 61 (2)(2000) p.913.CrossRefGoogle Scholar
29Friedel, J.Dislocations (Pergamon Press, Oxford, 1964).Google Scholar
30Odette, G.R.Lombrozo, P.M. and Wullaert, R.A. in Effects of Radiation on Materials: 12th International Symposium, ASTM-STP-870, edited by Garner, F.A. and Perrin, R.S. (American Society for Testing and Materials, Philadelphia, 1985) p.841.Google Scholar
31Wallin, K.Int. J. Mater. Prodt. Technol. 14 (1999) p.342.CrossRefGoogle Scholar
32Odette, G.R. and He, M.Y.J. Nucl. Mater. 283–287 (2000) p.120.CrossRefGoogle Scholar