Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T22:45:52.240Z Has data issue: false hasContentIssue false

Multimaterial, heterogeneous, and multicellular three-dimensional bioprinting

Published online by Cambridge University Press:  10 August 2017

Carmelo De Maria
Affiliation:
Department of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Italy; [email protected]
Giovanni Vozzi
Affiliation:
Department of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Italy; [email protected]
Lorenzo Moroni
Affiliation:
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, The Netherlands; [email protected]
Get access

Abstract

Bioprinting promises to create three-dimensional in vitro models to study pathological states and possible new therapies, and in the future, to produce complex tissue and organ replacements. This article will describe the recent advances in bioprinting technologies to engineer artificial tissues and organs by controlling spatial heterogeneity of chemical and physical properties of scaffolds and, at the same time, the cellular composition and spatial arrangement. Despite significant technological improvements in recent years, the positioning at the micrometric level and the switching of different cell types and biomaterials remain a challenge, which limits the development of resilient vascular, neural, and lymphatic networks for metabolites, signaling, and waste transport, and thus limits the development of thick and clinically relevant engineered vascularized tissues.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Murphy, S.V., Atala, A., Nat. Biotechnol. 32 (8), 773 (2014).Google Scholar
Feinberg, A.W., Miller, J.S., MRS Bull. 42 (8), 557 (2017).CrossRefGoogle Scholar
Guillemot, F., Mironov, V., Nakamura, M., Biofabrication 2 (1), 010201 (2010).Google Scholar
Groll, J., Boland, T., Blunk, T., Burdick, J.A., Cho, D.W., Dalton, P.D., Derby, B., Forgacs, G., Li, Q., Mironov, V.A., Moroni, L., Nakamura, M., Shu, W., Takeuchi, S., Vozzi, G., Woodfield, T.B., Xu, T., Yoo, J.J., Malda, J., Biofabrication 8 (1), 013001 (2016).Google Scholar
Ozbolat, I.T., Hospodiuk, M., Biomaterials 76, 321 (2016).Google Scholar
Saunders, R.E., Derby, B., Int. Mater. Rev. 59 (8), (2014), http://dx.doi.org/10.1179/1743280414Y.0000000040.Google Scholar
Wang, Z., Abdulla, R., Parker, B., Samanipour, R., Ghosh, S., Kim, K., Biofabrication 7 (4), 045009 (2015).Google Scholar
Melchels, F.P., Barradas, A.M., van Blitterswijk, C.A., de Boer, J., Feijen, J., Grijpma, D.W., Acta Biomater. 6 (11), 4208 (2010).Google Scholar
Malda, J., Visser, J., Melchels, F.P., Jüngst, T., Hennink, W.E., Dhert, W.J., Groll, J., Hutmacher, D.W., Adv. Mater. 25 (36), 5011 (2013).CrossRefGoogle Scholar
Arslan-Yildiz, A., El Assal, R., Chen, P., Guven, S., Inci, F., Demirci, U., Biofabrication 8 (1), 014103 (2016).CrossRefGoogle Scholar
Hölzl, K., Lin, S., Tytgat, L., Van Vlierberghe, S., Gu, L., Ovsianikov, A., Biofabrication 8 (3), 032002 (2016).Google Scholar
Atala, A., Kasper, F.K., Mikos, A.G., Sci. Transl. Med. 4 (160), 160rv12 (2012).CrossRefGoogle Scholar
Zhu, W., Qu, X., Zhu, J., Ma, X., Patel, S., Liu, J., Wang, P., Lai, C.S., Gou, M., Xu, Y., Zhang, K., Chen, S., Biomaterials 124, 106 (2017).Google Scholar
Jang, J., Kim, T.G., Kim, B.S., Kim, S.W., Kwon, S.M., Cho, D.W., Acta Biomater. 33, 88 (2016).Google Scholar
Boland, T., Mironov, V., Gutowska, A., Roth, E.A, Markwald, R.R., Anat. Rec. A Discov. Mol. Cell Evol. Biol. 272 (2), 497 (2003).Google Scholar
Derby, B., Science 338, 921 (2012).Google Scholar
Salmasi, S., Kalaskar, D.M., Yoon, W.-W., Blunn, G.W., Seifalian, A.M., World J. Stem Cells 7 (2), 266 (2015).Google Scholar
Skardal, A., Atala, A., Ann. Biomed. Eng. 43 (3), 730 (2015).CrossRefGoogle Scholar
Rutz, A.L., Hyland, K.E., Jakus, A.E., Burghardt, W.R., Shah, R.N., Adv. Mater. 27 (9), 1607 (2015).Google Scholar
Schuurman, W., Levett, P.A., Pot, M.W., van Weeren, P.R., Dhert, W.J., Hutmacher, D.W., Melchels, F.P., Klein, T.J., Malda, J., Macromol. Biosci. 13 (5), 551 (2013).Google Scholar
Chang, C.C., Boland, E.D., Williams, S.K., Hoying, J.B., J. Biomed. Mater. Res. B 98 (1), 160 (2011).Google Scholar
Brandl, F., Sommer, F., Goepferich, A., Biomaterials 28 (2), 134 (2007).Google Scholar
Fedorovich, N.E., Schuurman, W., Wijnberg, H.M., Prins, H.J., van Weeren, P.R., Malda, J., Alblas, J., Dhert, W.J., Tissue Eng. Part C Methods 18 (1), 33 (2012).Google Scholar
Hanson Shepherd, J.N., Parker, S.T., Shepherd, R.F., Gillette, M.U., Lewis, J.A., Nuzzo, R.G., Adv. Funct. Mater. 21 (1), 47 (2011).Google Scholar
Wang, X., Yan, Y., Pan, Y., Xiong, Z., Liu, H., Cheng, J., Liu, F., Lin, F., Wu, R., Zhang, R., Lu, Q., Tissue Eng. 12 (1), 83 (2006).CrossRefGoogle Scholar
Pataky, K., Braschler, T., Negro, A., Renaud, P., Lutolf, M.P., Brugger, J., Adv. Mater. 24 (3), 391 (2012).Google Scholar
Montemurro, F., De Maria, C., Orsi, G., Ghezzi, L., Tinè, M.R., Vozzi, G., J. Biomed. Mater. Res. B (2015), doi:10.1002/jbm.b.33569.Google Scholar
De Maria, C., Rincon, J., Duarte, A.A., Vozzi, G., Boland, T., Polym. Adv. Technol. 24, 895 (2013).Google Scholar
Fedorovich, N.E., Swennen, I., Girones, J., Moroni, L., van Blitterswijk, C.A., Schacht, E., Alblas, J., Dhert, W.J., Biomacromolecules 10 (7), 1689 (2009).Google Scholar
Colosi, C., Shin, S.R., Manoharan, V., Massa, S., Costantini, M., Barbetta, A., Dokmeci, M.R., Dentini, M., Khademhosseini, A., Adv. Mater. 28 (4), 677 (2016).CrossRefGoogle Scholar
Itoh, M., Nakayama, K., Noguchi, R., Kamohara, K., Furukawa, K., Uchihashi, K., Toda, S., Oyama, J., Node, K., Morita, S., PLoS One 10 (9), e0136681 (2015).CrossRefGoogle Scholar
Jakab, K., Neagu, A., Mironov, V., Markwald, R.R., Forgacs, G., Proc. Natl. Acad. Sci. U.S.A. 101 (9), 2864 (2004).Google Scholar
Tan, Y.J., Tan, X., Yeong, W.Y., Tor, S.B., Sci. Rep. 6. 39140 (2016).Google Scholar
Norotte, C., Marga, F.S., Niklason, L.E., Forgacs, G., Biomaterials 30 (30), 5910 (2009).Google Scholar
Jakab, K., Norotte, C., Marga, F., Murphy, K., Vunjak-Novakovic, G., Forgacs, G., Biofabrication 2 (2), 022001 (2010).Google Scholar
Rezende, R.A., Pereira, F.D.A.S., Kasyanov, V., Ovsianikov, A., Torgensen, J., Gruber, P., Stampfl, J., Brakke, K., Nogueira, J.A., Mironov, V., da Silva, J.V.L., Virtual Phys. Prototyp. 7 (4), 287 (2012).CrossRefGoogle Scholar
Gao, J., Tang, C., Elsawy, M.A., Smith, A.M., Miller, A.F., Saiani, A., Biomacromolecules 18 (3), 826 (2017).CrossRefGoogle Scholar
Highley, C.B., Rodell, C.B., Burdick, J.A., Adv. Mater. 27 (34), 5075 (2015).Google Scholar
Chang, R., Nam, J., Sun, W., Tissue Eng. Part A 14 (1), 41 (2008).Google Scholar
Tirella, A., De Maria, C., Criscenti, G., Vozzi, G., Ahluwalia, A., Rapid Prototyp. J. 18 (4), 299 (2012).Google Scholar
Ozbolat, I.T., Chen, H., Yu, Y., Robot. Comput. Integr. Manuf. 30 (3), 295 (2014).Google Scholar
Campbell, J., McGuinnes, I., Wirz, H., Sharon, A., Sauer-Budge, A.F., J. Nanotechnol. Eng. Med. 6 (2), (2015), doi:10.1115/1.4031230.Google Scholar
Liu, W., Zhang, Y.S., Heinrich, M.A., De Ferrari, F., Jang, H.L., Bakht, S.M., Moisés Alvarez, M., Yang, J., Li, Y.-C., Trujillo-de Santiago, G., Miri, A.K., Zhu, K., Khoshakhlagh, P., Prakash, G., Cheng, H., Guan, X., Zhong, Z., Ju, J., Zhu, G.H., Jin, X., Shin, S.R., Dokmeci, M.R., Khademhosseini, A., Adv. Mater. 29 (3), 1604630 (2017), doi:10.1002/adma.201604630.Google Scholar
Snyder, J., Son, A.R., Hamid, Q., Wu, H., Sun, W., Biofabrication 8 (1), 015002 (2016).Google Scholar
Orsi, G., Fagnano, M., De Maria, C., Montemurro, F., Vozzi, G., J. Tissue Eng. Regen. Med. 11 (1), 256 (2014).CrossRefGoogle Scholar
Nair, K., Gandhi, M., Khalil, S., Yan, K.C., Marcolongo, M., Barbee, K., Sun, W., Biotechnol J. 4 (8), 1168 (2009).Google Scholar
Miller, J.S., Stevens, K.R., Yang, M.T., Baker, B.M., Nguyen, D.H., Cohen, D.M., Toro, E., Chen, A.A., Galie, P.A, Yu, X., Chaturvedi, R., Bhatia, S.N., Chen, C.S., Nat Mater. 11 (9), 768 (2012).Google Scholar
Kolesky, D.B., Homan, K.A., Skylar-Scott, M.A., Lewis, J.A., Proc. Natl. Acad. Sci. U.S.A. 113 (12), 3179 (2016).Google Scholar
Kodadek, T., Chem. Biol. 8 (2), 105 (2001).Google Scholar
Arrabito, G., Musumeci, C., Aiello, V., Libertino, S., Compagnini, G., Pignataro, B., Langmuir 25 (11), 6312 (2009).Google Scholar
Cahill, D.J., J. Immunol. Methods 250 (1–2), 81 (2001).Google Scholar
Allain, L.R., Stratis-Cullum, D.N., Vo-Dinh, T., Anal. Chim. Acta 518 (1–2), 77 (2004).Google Scholar
Yanez, M., Rincon, J., Dones, A., De Maria, C., Gonzales, R., Boland, T., Tissue Eng. Part A 21 (1–2), 224 (2015).Google Scholar
Derby, B., Annu. Rev. Mater. Res. 40, 395 (2010).Google Scholar
Saunders, R.E., Gough, J.E., Derby, B., Biomaterials 29 (2), 193 (2008).Google Scholar
Tirella, A., Vozzi, F., De Maria, C., Vozzi, G., Sandri, T., Sassano, D., Cognolato, L., Ahluwalia, A., J. Biosci. Bioeng. 112 (1), 79 (2011).Google Scholar
Cui, X., Dean, D., Ruggeri, Z.M., Boland, T., Biotechnol. Bioeng. 106 (6), 963 (2010).Google Scholar
Xu, T., Baicu, C., Aho, M., Zile, M., Boland, T., Biofabrication 1 (3), 035001 (2009).Google Scholar
Cui, X., Boland, T., Biomaterials 30 (31), 6221 (2009).Google Scholar
Orsi, G., De Maria, C., Montemurro, F., Chauhan, V.M., Aylott, J.W., Vozzi, G., Curr. Top. Med. Chem. 15 (3), 271 (2015).Google Scholar
Di Biase, M., Saunders, R.E., Tirelli, N., Derby, B., Soft Matter 7, 2639 (2011).Google Scholar
Xu, T., Binder, K.W., Albanna, M.Z., Dice, D., Zhao, W., Yoo, J.J., Atala, A., Biofabrication 5 (1), 015001 (2013).Google Scholar
Cui, X., Breitenkamp, K., Finn, M.G., Lotz, M., D’Lima, D.D., Tissue Eng. Part A 18 (1112), 1304 (2012).Google Scholar
Teo, W.-E., Inai, R., Ramakrishna, S., Sci. Technol. Adv. Mater. 12 (1), 013002 (2011).CrossRefGoogle Scholar
Moroni, L., de Wijn, J.R., van Blitterswijk, C.A., J. Biomater. Sci. Polym. Ed. 19, 543572 (2008).Google Scholar
Moroni, L., Schotel, R., Hamann, D., De Wijn, J.R., van Blitterswijk, C.A., Adv. Funct. Mater. 18, 5360 (2008).Google Scholar
Park, S.H., Kim, T.G., Kim, H.C., Yang, D.Y., Park, T.G., Acta Biomater. 4, 11981207 (2008).Google Scholar
Criscenti, G., Longoni, A., Di Luca, A., De Maria, C., van Blitterswijk, C.A., Vozzi, G., Moroni, L., Biofabrication 8 (1), 015009 (2016).Google Scholar
Carrabba, M., De Maria, C., Oikawa, A., Reni, C., Rodriguez-Arabaolaza, I., Spencer, H., Slater, S., Avolio, E., Dang, Z., Spinetti, G., Madeddu, P., Vozzi, G., Biofabrication 8 (1), 015020 (2016).Google Scholar
He, J., Xia, P., Li, D., Biofabrication 8 (3), 035008 (2016).Google Scholar
Li, Y.C., Zhang, Y.S., Akpek, A., Shin, S.R., Khademhosseini, A., Biofabrication 9 (1), 012001 (2016).Google Scholar
Tumbleston, J.R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A.R., Kelly, D., Chen, K., Pinschmidt, R., Rolland, J.P., Ermoshkin, A., Samulski, E.T., De Simone, J.M., Science 347, 6228, 1349 (2015).Google Scholar