Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T00:15:25.692Z Has data issue: false hasContentIssue false

Molecular motors in materials science

Published online by Cambridge University Press:  12 February 2019

Henry Hess
Affiliation:
Columbia University, USA; [email protected]
Parag Katira
Affiliation:
San Diego State University, USA; [email protected]
Ingmar H. Riedel-Kruse
Affiliation:
Stanford University, USA; [email protected]
Stanislav Tsitkov
Affiliation:
Columbia University, USA; [email protected]
Get access

Abstract

Materials can be endowed with unique properties by the integration of molecular motors. Molecular motors can have a biological origin or can be chemically synthesized and produce work from chemical energy or light. Their ability to access large internal or external reservoirs of energy enables a wide range of nonequilibrium behaviors, including the production of force, changes in shape, internal reorganization, and dynamic changes in mechanical properties—muscle tissue is one illustration of the possibilities. Current research efforts advance our experimental capabilities to create such “active matter” by using either biomolecular or synthetic motors, and also advance our theoretical understanding of these materials systems. Here, we introduce this exciting research field and highlight a few of the recent advances as well as open questions.

Type
Bioinspired Far-From-Equilibrium Materials
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Schliwa, M., Woehlke, G., Nature 422, 759 (2003).10.1038/nature01601CrossRefGoogle Scholar
Koumura, N., Geertsema, E.M., van Gelder, M.B., Meetsma, A., Feringa, B.L., J. Am. Chem. Soc. 124, 5037 (2002).10.1021/ja012499iCrossRefGoogle Scholar
Hess, H., Clemmens, J., Qin, D., Howard, J., Vogel, V., Nano Lett. 1 (5), 235 (2001).CrossRefGoogle Scholar
Koumura, N., Zijlstra, R.W.J., van Delden, R.A., Harada, N., Feringa, B.L., Nature 401, 152 (1999).10.1038/43646CrossRefGoogle Scholar
Vale, R.D., Cell 112 (4), 467 (2003).CrossRefGoogle Scholar
Bagshaw, C.R., Muscle Contraction, 2nd ed. (Chapman & Hall, London, 1993).10.1007/978-94-015-6839-5CrossRefGoogle Scholar
Huxley, A.F., Simmons, R.M., Nature 233, 533 (1971).10.1038/233533a0CrossRefGoogle Scholar
Liu, Y., Flood, A.H., Bonvallett, P.A., Vignon, S.A., Northrop, B.H., Tseng, H.R., Jeppesen, J.O., Huang, T.J., Brough, B., Baller, M., Magonov, S., Solares, S.D., Goddard, W.A., Ho, C.M., Stoddart, J.F., J. Am. Chem. Soc. 127, 9745 (2005).CrossRefGoogle Scholar
Huxley, A., Peachey, L., J. Physiol. 156, 150 (1961).CrossRefGoogle Scholar
Hawkins, C.J., Bennett, P.M., J. Muscle Res. Cell Motil. 16, 303 (1995).CrossRefGoogle Scholar
Boateng, S.Y., Goldspink, P.H., Cardiovasc. Res. 77 (4), 667 (2008).10.1093/cvr/cvm048CrossRefGoogle Scholar
Mockford, E.L., Ann. Entomol. Soc. Am. 90, 115 (1997).10.1093/aesa/90.2.115CrossRefGoogle Scholar
Durban, J.W., Moore, M.J., Chiang, G., Hickmott, L.S., Bocconcelli, A., Howes, G., Bahamonde, P.A., Perryman, W.L., LeRoi, D.J., Mar. Mamm. Sci. 32, 1510 (2016).10.1111/mms.12328CrossRefGoogle Scholar
Pollack, G.H., Muscles & Molecules—Uncovering the Principles of Biological Motion (Ebner & Sons, Seattle, 1990).Google Scholar
Squire, J.M., Curr. Opin. Struct. Biol. 7, 247 (1997).10.1016/S0959-440X(97)80033-4CrossRefGoogle Scholar
Huxley, H.E., J. Mol. Biol. 7, 281 (1963).CrossRefGoogle Scholar
Hill, A., Proc. R. Soc. Lond. B 126 (843), 136 (1938).Google Scholar
Norton, R.L., Machine Design: An Integrated Approach, 4th ed. (Prentice Hall, Boston, 2011).Google Scholar
Soong, R.K., Bachand, G.D., Neves, H.P., Olkhovets, A.G., Craighead, H.G., Montemagno, C.D., Science 290 (5496), 1555 (2000).10.1126/science.290.5496.1555CrossRefGoogle Scholar
Sowa, Y., Rowe, A.D., Leake, M.C., Yakushi, T., Homma, M., Ishijima, A., Berry, R.M., Nature 437, 916 (2005).CrossRefGoogle Scholar
Hess, H., Soft Matter 2 (8), 669 (2006).CrossRefGoogle Scholar
Jaffe, B., Piezoelectric Ceramics, 1st ed. (Academic Press, London, 1971).Google Scholar
Lam, A.T., VanDelinder, V., Kabir, A.M.R., Hess, H., Bachand, G.D., Kakugo, A., Soft Matter 12 (4), 988 (2016).CrossRefGoogle Scholar
Rao, V.B., Feiss, M., Annu. Rev. Genet. 42, 647 (2008).CrossRefGoogle Scholar
Pohl, C., Symmetry 7 (4), 2062 (2015).CrossRefGoogle Scholar
Jackson, S., J. Clin. Invest. 122 (10), 3374 (2012).CrossRefGoogle Scholar
Astumian, R., Chem. Sci. 8, 840 (2017).CrossRefGoogle Scholar
Hess, H., Saper, G., Acc. Chem. Res. 51 (12), 3051 (2018).CrossRefGoogle Scholar
Agarwal, A., Hess, H., Prog. Polym. Sci. 35 (1–2), 252 (2010).CrossRefGoogle Scholar
Ramaswamy, S., Annu. Rev. Condens. Matter Phys. 1, 323 (2010).CrossRefGoogle Scholar
Howard, J., Mechanics of Motor Proteins and the Cytoskeleton (Sinauer, Sunderland, MA, 2001), p. 367.Google Scholar
Riedel-Kruse, I.H., Hilfinger, A., Howard, J., Jülicher, F., HFSP J. 1, 192 (2007).CrossRefGoogle Scholar
Nedelec, F.J., Surrey, T., Maggs, A.C., Leibler, S., Nature 389 (6648), 305 (1997).CrossRefGoogle Scholar
Huber, L., Suzuki, R., Krüger, T., Frey, E., Bausch, A., Science 361 (6399), 255 (2018).CrossRefGoogle Scholar
Needleman, D., Dogic, Z., Nat. Rev. Mater. 2 (9), 17048 (2017).CrossRefGoogle Scholar
Saito, A., Farhana, T.I., Kabir, A.M.R., Inoue, D., Konagaya, A., Sada, K., Kakugo, A., RSC Adv. 7 (22), 13191 (2017).CrossRefGoogle Scholar
Torisawa, T., Taniguchi, D., Ishihara, S., Oiwa, K., Biophys. J. 111, 373 (2016).CrossRefGoogle Scholar
Hagan, M.F., Baskaran, A., Curr. Opin. Cell Biol. 38, 74 (2016).CrossRefGoogle Scholar
Sanchez, T., Chen, D.T.N., DeCamp, S.J., Heymann, M., Dogic, Z., Nature 491 (7424), 431 (2012).CrossRefGoogle Scholar
Sumino, Y., Nagai, K.H., Shitaka, Y., Tanaka, D., Yoshikawa, K., Chate, H., Oiwa, K., Nature 483 (7390), 448 (2012).CrossRefGoogle Scholar
e Silva, M.S., Depken, M., Stuhrmann, B., Korsten, M., MacKintosh, F.C., Koenderink, G.H., Proc. Natl. Acad. Sci. U.S.A. 108 (23), 9408 (2011).CrossRefGoogle Scholar
Saw, T.B., Xi, W., Ladoux, B., Lim, C.T., Adv. Mater. 30 (47), 1802579 (2018).CrossRefGoogle Scholar
Kay, E.R., Leigh, D.A., Zerbetto, F., Angew. Chem. Int. Ed. Engl. 46 (1–2), 72 (2007).CrossRefGoogle Scholar
van Delden, R.A., Koumura, N., Harada, N., Feringa, B.L., Proc. Natl. Acad. Sci. U.S.A. 99 (8), 4945 (2002).CrossRefGoogle Scholar
Li, Q., Fuks, G., Moulin, E., Maaloum, M., Rawiso, M., Kulic, I., Foy, J.T., Giuseppone, N., Nat. Nanotechnol. 10, 161 (2015).CrossRefGoogle Scholar
Yeghiazarian, L., Mahajan, S., Montemagno, C., Cohen, C., Wiesner, U., Adv. Mater 17 (15), 1869 (2005).CrossRefGoogle Scholar
García-López, V., Chen, F., Nilewski, L.G., Duret, G., Aliyan, A., Kolomeisky, A.B., Robinson, J.T., Wang, G., Pal, R., Tour, J.M., Nature 548 (7669), 567 (2017).CrossRefGoogle Scholar
Bruns, C.J., Stoddart, J.F., Acc. Chem. Res. 47 (7), 2186 (2014).CrossRefGoogle Scholar
Du, G., Moulin, E., Jouault, N., Buhler, E., Giuseppone, N., Angew. Chem. 124 (50), 12672 (2012).CrossRefGoogle Scholar
Goujon, A., Mariani, G., Lang, T., Moulin, E., Rawiso, M., Buhler, E., Giuseppone, N., J. Am. Chem. Soc. 139 (13), 4923 (2017).CrossRefGoogle Scholar
Smith, N.P., Barclay, C.J., Loiselle, D.S., Prog. Biophys. Mol. Biol. 88 (1), 1 (2005).CrossRefGoogle Scholar
Armstrong, M.J., Hess, H., ACS Nano 8 (5), 4070 (2014).CrossRefGoogle Scholar
Hess, H., Dumont, E.L.P., Small 7 (12), 1619 (2011).CrossRefGoogle Scholar
Lam, A.T.-C., Tsitkov, S., Zhang, Y., Hess, H., Nano Lett . 18 (2), 1530 (2018).CrossRefGoogle Scholar
Omabegho, T., Gurel, P.S., Cheng, C.Y., Kim, L.Y., Ruijgrok, P.V., Das, R., Alushin, G.M., Bryant, Z., Nat. Nanotechnol. 13 (1), 34 (2018).CrossRefGoogle Scholar
Bhushan, B., Caspers, M., Microsyst. Technol. 23 (4), 1117 (2017).CrossRefGoogle Scholar