Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T09:30:20.366Z Has data issue: false hasContentIssue false

Molecular Electronics: Theory and Device Prospects

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Understanding current flow through molecular conductors involves simulating the contact surface physics, the molecular chemistry, the device electrostatics, and the quantum kinetics of nonequilibrium transport, along with more sophisticated processes such as scattering and many-body effects.We summarize our current theoretical understanding of transport through such nanoscale devices. Our approach is based on self-consistently combining the nonequilibrium Green's function (NEGF) formulation of transport with an electronic structure calculation of the molecule.We identify the essential ingredients that go into such a simulation. While experimental data for many of the inputs required for quantitative simulation are still evolving, the general framework laid down in this treatment should still be applicable.We use these concepts to examine a few prototype molecular devices, such as wires, transistors, and resonant-tunneling diodes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bourianoff, G.Computer 36 (2003) p. 44; S. Thompson, N. Anand, M. Armstrong, C. Auth, B. Arcot, M. Alavi, P. Bai, J. Bielefeld, R. Bigwood, J.Brandenburg, M. Buehler, S. Cea, V. Chikarmane, C. Choi, R. Frankovic, T. Ghani, G. Glass, W. Han, T. Hoffmann, M. Hussein, P. Jacob, A. Jain, C. Jan, S. Joshi, C. Kenyon, J.Klaus, S. Klopcic, J.Luce, Z.Ma, B. McIntyre, K. Mistry, A. Murthy, P. Nguyen, H. Pearson, T. Sandford, R. Schweinfurth, R. Shaheed, S. Sivakumar, M. Taylor, B. Tufts, C. Wallace, P. Wang, C. Weber, and M. Bohr, in IEDM Tech. Dig. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2002) p.61.Google Scholar
2Doris, B.Ieong, M.Kanarsky, T.Zhang, Y.Roy, R.A.Dokumaci, O.Ren, Z.Jamin, F.F.Shi, L.Natzle, W.Huang, H.J.Mezzapelle, J.Mocuta, A.Womack, S.Gribelyuk, M.Jones, E.C.Miller, R.J.Wong, H.S.P. and Haensch, W. in IEDM Tech. Dig. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2002) p. 267.Google Scholar
3Frank, D.J.Dennard, R.H.Nowak, E.Solomon, P.M.Taur, Y. and Wong, H.S.P. in Proc. IEEE 89 (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2001) p. 259.Google Scholar
4Lundstrom, M.Science 299 (2003) p.210.Google Scholar
5For a recent review, see Nitzan, A. and Ratner, M.A.Science 300 (2003) p.1384.Google Scholar
6See Ghosh, A.W. and Datta, S.J. Comput. Electron. 1 (2002) p. 515 and references therein.CrossRefGoogle Scholar
7Datta, S.Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, UK, 1995).Google Scholar
8Haug, H. and Jauho, A.P.Quantum Kinetics in Transport and Optics of Semiconductors (Springer-Verlag, Berlin, 1996).Google Scholar
9Nitzan, A.J. Phys. Chem. A 105 (2001) p. 2677.Google Scholar
10Liang, G.C.Ghosh, A.W.Paulsson, M. and Datta, S.Phys. Rev. B 69 (2004) p. 115302.Google Scholar
11Datta, S.Tian, W.Hong, S.Reifenberger, R.Henderson, J.I. and Kubiak, C.P.Phys. Rev. Lett. 79 (1997) p. 2530; W. Tian, S. Datta, S. Hong, R. Reifenberger, J.I. Henderson, and C.P. Kubiak, J.Chem. Phys. 109 (1998) p.2874.CrossRefGoogle Scholar
12Damle, P.S.Ghosh, A.W. and Datta, S.Phys. Rev. B 64 R201403 (2001); Chem. Phys. 281 (2002) p.171.CrossRefGoogle Scholar
13Meir, Y.Wingreen, N.S. and Lee, P.A.Phys. Rev. Lett. 70 (1993) p.2601.CrossRefGoogle Scholar
14Figures taken with permission from Kikkawa, J.M. and Awschalom, D.D.Nature 397 (1999) p. 139; U. Banin, Y.W. Cao, D. Katz, and O. Mello, Nature 400 (1995) p. 542; M.K. Sunkara, S. Sharma, R. Miranda, G. Lian, and E.C. Dickey, Appl. Phys. Lett. 79 (2001) p.1546; B. Doris, M. Ieong, T. Kanarsky, Y. Zhang, R.A. Roy, O. Dokumaci, Z.Ren, F.F. Jamin, L. Shi, W. Natzle, H.J. Huang, J. Mezzapelle, A. Mocuta, S. Womack, M. Gribelyuk, E.C. Jones, R.J. Miller, H.S.P. Wong and W. Haensch, in IEDM Tech. Dig. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2002) p.267.Google Scholar
15Meir, Y. and Wingreen, N., Phys. Rev. Lett. 68 (1992) p. 2512.Google Scholar
16Lake, R.K. and Datta, S., Phys. Rev. B 46 (1992) p.4757.Google Scholar
17Segal, D., Nitzan, A., Davis, W.B.Wasielewski, M.R. and Ratner, M.A.J. Phys. Chem. B 104 (2000) p.3817.Google Scholar
18Neofotistos, G., Lake, R. and Datta, S., Phys. Rev. B 43 (1991) p. R2442; F. Anariba and R.L. McCreery, J. Phys. Chem. B 106 (2002) p. 10355.Google Scholar
19Reichert, J., Ochs, R., Beckmann, D., Weber, H.B., Mayor, M., and Löhneysen, H.v., Phys. Rev. Lett. 88, 176804 (2002); F. Zahid, A.W. Ghosh, M. Paulsson, E. Polizzi, and S. Datta, arXiv.org e-print archive, cond-mat/0403401 (accessed April 2004).Google Scholar
20Damle, P., Ghosh, A.W. and Datta, S., in Molecular Nanoelectronics, edited by Reed, M. and Lee, T. (American Scientific Publishers, Stevenson Ranch, CA, 2003).Google Scholar
21Damle, P.S. PhD thesis, Purdue University, 2002.Google Scholar
22Lee, J.O.Lientschnig, G., Wiertz, F., Struijk, M., Janssen, R.A.J.Egberink, R., Reinhoudt, D.N.Hadley, P., and Dekker, C., Nano Lett. 3 (2003) p. 113; C.R. Kagan A. Afzali, R. Martel, L.M. Gignac, P.M. Solomon, A.G. Schrott, and B. Ek, Nano Lett. 3 (2003) p.119.CrossRefGoogle Scholar
23Damle, P.S.Rakshit, T., Paulsson, M., and Datta, S., IEEE Trans. Nanotech. 1 (2002) p.145.Google Scholar
24Ghosh, A.W.Rakshit, T., and Datta, S., Nano Lett. 4 (2004) p.565.Google Scholar
25Akita, S., Appl. Phys. Lett. 79 (2001) p. 1691.Google Scholar
26Wolkow, R.A.Jpn. J. Appl. Phys., Part 1 40 (2001) p. 4378; M.C. Hersam, N.P. Guisinger, and J.W. Lyding, Nanotechnology 11 (2000) p.70.Google Scholar
27Liu, Q. and Hoffman, R., J. Am. Chem. Soc. 117 (1995) p.4082.CrossRefGoogle Scholar
28Ghosh, A.W.Liang, G.C. and Kienle, D. (unpublished).Google Scholar
29Rakshit, T., Liang, G.C.Ghosh, A.W. and Datta, S., “Silicon-Based Molecular Electronics,” arXiv.org e-print archive, cond-mat/0305695 (accessed April 2004).Google Scholar
30Jaklevic, R.C. and Lambe, J., Phys. Rev. Lett. 27 (1966) p.1139.Google Scholar
31Guisinger, N.P.Greene, M.E.Basu, R., Baluch, A.S. and Hersam, M.C.Nano Lett. 4 (2004) p.55.Google Scholar
32Seabaugh, A., Deng, X., Blake, T., Brar, B., Broekaert, T., Lake, R., Morris, F., and Frazier, G., in IEDM Tech. Dig. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1998) p.429.Google Scholar
33Park, J., Pasupathy, A.N.Goldsmith, J.I.Chang, C., Yaish, Y., Petta, J.R.Rinkoski, M., Sethna, J.P.Abruna, H.D.McEuen, P.L. and Ralph, D.C.Nature 417 (2002) p. 722; W.J. Liang, M.P. Shores, M. Bockrath, J.R. Long, and H. Park, Nature 417 (2002) p. 725; L.H. Yu and D. Natelson, Nano Lett. 4 (2004) p. 79.Google Scholar