Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-05T08:31:51.877Z Has data issue: false hasContentIssue false

Mixed Conductors: Synthesis, Properties, Applications

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Only in the last two decades has the full realization been made that many materials can incorporate atoms or ions into their structures around room temperature. This incorporation frequently occurs with minimal structural changes so that the reaction can be reversed by appropriate chemical or electrical means. These materials include metals, inorganics, and organics. The driving force for reaction is a gain in free energy and is frequently associated with a transfer of electron density between the guest and host species. Thus by definition the host material must contain an electronic structure that can be readily oxidized or reduced, and hence for inorganic materials normally contains transition metals with their variable valences, or for organics a delocalized electron system.

The systems described here frequently exhibit both electronic and ionic conductivity, i.e., they are mixed conductors over at least part of their composition range. They tend to have variable composition; this contrasts with solid electrolytes such as β-alumina which may also be nonstoichiometric but are of fixed composition at normal temperatures. Materials in this last category include the β-aluminas and aluminosilicates such as vermiculite and montmorillonite, both of which can be used as electrolytes due to their high ionic conductivity and low electronic conductivity.

Type
Solid State Ionics
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Whittingham, M.S. and Huggins, R.A., J. Chem. Phys. 54 (1971) p. 414.CrossRefGoogle Scholar
2.Deb, S.K., Appl. Optics, Supplement 3 (1969) p. 192; (a) R.D. Rauh and S.F. Cogan, Solid State Ionics 28 (1988) p. 1707; M. Green, Thin Solid Films 50 (1978) p. 145; S.K. Mohapatra and S. Wagner, J. Electrochem. Soc. 125 (1978) p. 1603; H.R. Zeller and H.U. Beyeler, Appl. Phys. 13 (1977) p. 231; B. Reichman and A.J. Bard, J. Electrochem. Soc. 126 (1979) p. 583; (b) R.B. Goldner, T.E. Haas, G. Seward, K.K. Wong, P. Norton, G. Foley, G. Berera, G. Wei, S. Schulz, and R. Chapman, Solid State Ionics 28 (1988) p. 1715.CrossRefGoogle Scholar
3.Whittingham, M.S., J. Electrochem. Soc. 123 (1976) p. 315.CrossRefGoogle Scholar
4.Skold, K. and Nelin, G., J. Phys. Chem. Solids 28 (1967) p. 2369; J.E. Worsham, M.K. Wilkinson, and C.K. Shull, J. Phys. Chem. Solids 3 (1957) p. 303; J. Bergsma and J.A. Goedkoop, Physica 26 (1960) p. 744.CrossRefGoogle Scholar
5.Nace, D.M. and Ashton, J.G., J. Amer. Chem. Soc. 79 (1957) p. 3623; P. Mitacek, Jr. and J.G. Ashton, J. Amer. Chem. Soc. 85 (1963) p. 137.CrossRefGoogle Scholar
6.Gillespie, L.J. and Gaulstein, L.S., J. Amer. Chem. Soc. 58 (1936) p. 2565.CrossRefGoogle Scholar
7.Frieske, H. and Wicke, E., Ber. Bunsenges. Phys. Chem. 77 (1973) p. 48.CrossRefGoogle Scholar
8.Vökl, J. and Alefeld, G., in Diffusion in Solids, edited by Nowick, A.S. and Burton, J.J. (Academic Press, 1975) p. 231.CrossRefGoogle Scholar
9.Buschow, K.H.J. and van Mai, H.H., in Intercalation Chemistry, edited by Whittingham, M.S. and Jacobson, A.J. (Academic Press, 1982) p. 405.CrossRefGoogle Scholar
10.Stritzker, B. and Buckel, W., Z. Phys. 257 (1972) p. 1; Phys. Lett. A43 (1973) p. 403.CrossRefGoogle Scholar
11.Birnbaum, H.K. and Wert, C.A., Ber. Bunsenges. Phys. Chem. 76 (1972) p. 806.CrossRefGoogle Scholar
12.Vökl, J., Wollenweber, G., Klatt, K.H., and Alefeld, G., Z. Naturforsch. 26a (1971) p. 922.CrossRefGoogle Scholar
13.Huot, J.Y., Van Neste, A., Brossard, L., and Schulz, R., J. Electrochem. Soc. 136 (1989) p. 922.Google Scholar
14.Nacken, B. and Bronger, W., J. Less Common Metals 52 (1977) p. 323.CrossRefGoogle Scholar
15.Whittingham, M.S., Science 192 (1976) p. 1126; K.M. Abraham, G.L. Holleck, T. Nguyen, D.M. Pasquariello, and D.A. Schwartz, 4th Intl. Meeting on Lithium Batteries, Vancouver 1988, extended abstracts p. 93; M. Anderman and J.T. Lundquist, J. Electrochem. Soc. 135 (1988) p. 1167; M.S. Whittingham and J.A. Panella, Mater. Res. Bull. 16 (1981) p. 37.CrossRefGoogle Scholar
16.Whittingham, M.S., Mater. Res. Bull. 9 (1974) p. 1681.CrossRefGoogle Scholar
17.Silbernagel, B.G. and Whittingham, M.S., J. Chem. Phys. 64 (1976) p. 3670.CrossRefGoogle Scholar
18.Thompson, A.H., Phys. Rev. Lett. 40 (1978) p. 1511.CrossRefGoogle Scholar
19.Whittingham, M.S., Prog. in Solid State Chem. 12 (1978) p. 41.CrossRefGoogle Scholar
20.Murphy, D.W., Carides, J.N., DiSalvo, F.J., Cros, C., and Waszczak, J.V., Mater. Res. Bull. 12 (1977) p. 825.CrossRefGoogle Scholar
21.Py, M.A. and Haering, R.R., Can. J. Phys. 61 (1983) p. 76; F.C. Laman, M.W. Matsen, and J.A.R. Styles, J. Electrochem. Soc. 133 (1986) p. 2441.CrossRefGoogle Scholar
22.Jacobson, A.J., Chianelli, R.R., and Whittingham, M.S., J. Electrochem. Soc. 126 (1979) p. 2277.CrossRefGoogle Scholar
23.Schöllhorn, R. and Payer, A., Angew. Chem. Int. Ed. 22 (1986) p. 905; S. Sinha and D. W. Murphy, Solid State Ionics 20 (1986) p. 81.CrossRefGoogle Scholar
24.Thomas, M.G., David, W.I., Goodenough, J.B., and Graves, P., Mater. Res. Bull. 20 (1985) p. 1137.CrossRefGoogle Scholar
25.Deniard, P., Chevalier, P., Trichet, L., and Rouxel, J., Synthetic Metals 5 (1983) p. 141.CrossRefGoogle Scholar
26.Herold, A., in Chemical Physics of Intercalation, edited by Legrand, A.P. and Flandrois, S. (Plenum Press, 1987) p. 3.CrossRefGoogle Scholar
27.Bemier, P., Fite, C., and Khodary, A. El, in Chemical Physics of Intercalation, edited by Legrand, A.P. and Flandrois, S. (Plenum Press, 1987), p. 271.Google Scholar
28.Theophilou, N., Solid State Ionics 32-33 (1989) p. 582.CrossRefGoogle Scholar
29.Dickens, P.G., Quilliam, R.M.P., and Whittingham, M.S., Mater. Res. Bull. 3 (1968) p. 941.CrossRefGoogle Scholar
30.Dickens, P.G. and Whittingham, M.S., Quart. Rev. Chem. Soc. 22 (1968) p. 30.CrossRefGoogle Scholar
31.Wiseman, P.J. and Dickens, P.G., J. Solid State Chem. 17 (1976) p. 91.CrossRefGoogle Scholar
32.Cheng, K.H. and Whittingham, M.S., Solid State Ionics 1 (1980) p. 151.CrossRefGoogle Scholar
33.Graham, J. and Wadsley, A.D., Acta Cryst. 14 (1961) p. 379.CrossRefGoogle Scholar
34.Gerand, B., Nowogrocki, G., Guenot, J., and Figlarz, M., J. Solid State Chem. 29 (1979) p. 429.CrossRefGoogle Scholar
35.Cheng, K.H., Jacobson, A.J., and Whittingham, M.S., Solid State Ionics 5 (1981) p. 355.CrossRefGoogle Scholar
36.Harb, F., Gérand, B., Nowogrocki, G., and Figlarz, M., Solid State Ionics 32-33 (1989) p. 84.Google Scholar
37.Coucou, A. and Figlarz, M., Solid State Ionics 28-30 (1988) p. 1762.CrossRefGoogle Scholar
38.Günter, J.R., Amberg, M., and Schmalle, H., Mater. Res. Bull. 24 (1989) p. 289.CrossRefGoogle Scholar
39.Ramanan, A., Reis, K., and Whittingham, M.S., preliminary results.Google Scholar
40.Slade, R.C.T., West, B.C., and Hall, G.P., Solid State Ionics 32-33 (1989) p. 154.CrossRefGoogle Scholar
41.Ho, C., Raistrick, I.D., and Huggins, R.A., J. Electrochem. Soc. 127 (1980) p. 343.CrossRefGoogle Scholar
42.Hussain, A., Kihlborg, L., and Klug, A., J. Solid State Chem. 25 (1978) p. 189.CrossRefGoogle Scholar
43.Joo, S-K., Raistrick, I.D., and Huggins, R.A., Solid State Ionics 18 (1986) p. 592.CrossRefGoogle Scholar
44.Carrillo-Cabrera, W., Wiemhöfer, H-D., and Göpel, W., Solid State Ionics 32-33 (1989) p. 1172.CrossRefGoogle Scholar
45.Vischjager, D.J., van der Put, P.J., Schram, J., and Schoonman, J., Solid State Ionics 27 (1988) p. 199; E.J.M. O'Sullivan and B.P. Chang, Appl. Phys. Lett. 52 (1988) p. 1441; X. Turrillas, J.A. Kilner, I. Kontoulis, and B.C.H. Steele, J. Less Common Metals 151 (1989) p. 229.CrossRefGoogle Scholar
46.Chemistry of High-Temperature Superconductors, edited by Nelson, D.L., Whittingham, M.S., and George, T.F. (Amer. Chem. Soc. Symposium Series 351, 1987) p. 311.CrossRefGoogle Scholar
47.Feist, T.P., Mocarski, S.J., Davies, P.K., Jacobson, A.J., and Lewandowski, J.T., Solid State Ionics 28 (1988) p. 1338; B. Zachau-Christiansen, K. West, T. Jacobsen, and S. Atlung, Solid State Ionics 28 (1988) p. 1176; R. Marchand, L. Brohan, and M. Tournoux, Mater. Res. Bull. 15 (1980) p. 1129 and Progress in Solid State Chem. 17 (1986) p. 33; D.W. Murphy, R.J. Cava, S.M. Zahurak, and A. Santoro, Solid State Ionics 9-10 (1983) p. 413; L. Brohan and R. Marchand, Solid State Ionics 9-10 (1983) p. 419.CrossRefGoogle Scholar
48.Murphy, D.W., Dye, J.L., and Zahurak, S.M., Inorganic Chemistry 22 (1983) p. 3679.CrossRefGoogle Scholar
49.Latroche, M., Brohan, L., Marchand, R., and Tournoux, M., J. Solid State Chem. 81 (1989) p. 78.CrossRefGoogle Scholar