Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T23:09:04.962Z Has data issue: false hasContentIssue false

Mixed Atomistic–Continuum Models of Material Behavior: The Art of Transcending Atomistics and Informing Continua

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

The recent development of microscopes that allow for the examination of defects at the atomic scale has made possible a more direct connection between the defects and the macroscopic response they engender (see, e.g., the December 1999 issue of MRS Bulletin).

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Mason, T.E. and Taylor, A.D. guest editors, “Neutron Scattering in Materials Research,” MRS Bull. 24 (12) (1999) pp. 1447.CrossRefGoogle Scholar
2Wasserman, E.Stixrude, L. and Cohen, R.E.Phys. Rev. B: Condens. Matter 53 (13) (1996) p.8296.CrossRefGoogle Scholar
3Cohen, R.E.Stixrude, L. and Wasserman, E.Phys. Rev. B: Condens. Matter 56 (14) (1997) p.8575.CrossRefGoogle Scholar
4Soderlind, P. and Moriarty, J.A.Phys. Rev. B: Condens. Matter 57 (17) (1998) p.10340.CrossRefGoogle Scholar
5Steinle-Neumann, G., Stixrude, L. and Cohen, R.E.Phys. Rev. B: Condens. Matter 60 (2)(1999) p.791.CrossRefGoogle Scholar
6Cohen, R.E.Gulseren, O. and Hemley, R.J.Am. Mineral. 85 (2)(2000) p.338.CrossRefGoogle Scholar
7Mura, T.Micromechanics of Defects in Solids (Kluwer Academic Publishers, Boston, 1987).CrossRefGoogle Scholar
8Baskes, M.I.Hoagland, R.G. and Needleman, A., Mater. Sci. Eng., A 159 (1992) p.1.CrossRefGoogle Scholar
9Dawson, P.R.Needleman, A. and Suresh, S.Mater. Sci. Eng., A 175 (1994) p.43.CrossRefGoogle Scholar
10Ortiz, M. and Shih, C.F. eds., in Proc. IUTAM Symp. on Computational Mechanics of Materials, published in Model. Simul. Mater. Sci. Eng. 2 (34) (May 1994) p.421.Google Scholar
11Campbell, G.H.Foiles, S.M.Huang, H.C.Hughes, D.A.King, W.E.Lassila, D.H.Nikkel, D.J.Rubia, T. Diaz de la, Shu, J.Y. and Smyshlyaev, V.P.Mater. Sci. Eng., A 251 (12) (1998) p.1.CrossRefGoogle Scholar
12Bulatov, V.V. and Kubin, L.P.Curr. Opin. Solid State Mater. Sci. 3 (6)(1998) p.558.CrossRefGoogle Scholar
13Phillips, R.Curr. Opin. Solid State Mater. Sci. 3 (6)(1998) p.526.CrossRefGoogle Scholar
14Ortiz, M. and Phillips, R.Adv. Appl. Mech. 36 (1999) p.1.Google Scholar
15Phillips, R.Rodney, D.Shenoy, V.Tadmor, E. and Ortiz, M.Model. Simul. Mater. Sci. Eng. 7 (5)(1999) p.769.CrossRefGoogle Scholar
16Moriarty, J.A.Xu, W.Soderlind, P.Belak, J.Yang, L.H. and Zhu, J., Trans. ASME J.Eng. Mater. Technol. 121 (2)(1999) p.120.CrossRefGoogle Scholar
17Baskes, M.I.Curr. Opin. Solid State Mater. Sci. 4 (3)(1999) p.273.CrossRefGoogle Scholar
18Phillips, R.Crystals, Defects and Microstruc-tures: Modeling across Scales (Cambridge University Press, Cambridge, 2000).Google Scholar
19Tadmor, E.B.Ortiz, M. and Phillips, R.Philos. Mag. A 73 (6)(1996) p.1529.CrossRefGoogle Scholar
20Tadmor, E.B.Phillips, R. and Ortiz, M.Langmuir 12 (19) (1996) p.4529.CrossRefGoogle Scholar
21Shenoy, V.B.Miller, R.Tadmor, E.B.Phillips, R. and Ortiz, M.Phys. Rev. Lett. 80 (4)(1998) p.742.CrossRefGoogle Scholar
22Miller, R.Tadmor, E.B.Phillips, R. and Ortiz, M.Model. Simul. Mater. Sci. Eng. 6 (5) (1998) p.607.CrossRefGoogle Scholar
23Miller, R.Ortiz, M.Phillips, R.Shenoy, V. and Tadmor, E.B.Eng. Fracture Mech. 61 (3–4) (1998) p.427.CrossRefGoogle Scholar
24Rodney, D. and Phillips, R.Phys. Rev. Lett. 82 (8)(1999) p.1704.CrossRefGoogle Scholar
25Shenoy, V.B.Miller, R.Tadmor, E.B.Rodney, D.Phillips, R. and Ortiz, M.J.Mech. Phys. Solids 47 (3)(1999) p.611.CrossRefGoogle Scholar
26Tadmor, E.B.Miller, R.Phillips, R. and Ortiz, M.J.Mater. Res. 14 (6)(1999) p.2233.CrossRefGoogle Scholar
27Shenoy, V.B.Phillips, R. and Tadmor, E.B.J.Mech. Phys. Solids 48 (4)(2000) p.649.CrossRefGoogle Scholar
28Smith, G.S.Tadmor, E.B. and Kaxiras, E.Phys. Rev. Lett. 84 (2000) p.1260.CrossRefGoogle Scholar
29Knap, J. and Ortiz, M. “An Analysis of the Quasi-Continuum Method,” J. Mech. Phys. Solids (2001)in press.CrossRefGoogle Scholar
30Shenoy, V.Shenoy, V. and Phillips, R. in Multiscale Modeling of Materials, edited by Bulatov, V.V., Rubia, T. Diaz de la, Phillips, R.Kaxiras, E. and Ghoniem, N. (Mater. Res. Soc. Symp. Proc. 538, Warrendale, PA, 1999) p.465.Google Scholar
31Ercolessi, F. and Adams, J.B.Europhys. Lett. 26 (8)(1994) p.583.CrossRefGoogle Scholar
32Zielinski, W.Huang, H.Venkataraman, S. and Gerberich, W.W.Philos. Mag. A 72 (1995) p.1221.CrossRefGoogle Scholar
33Gerberich, W.W.Nelson, J.C.Lilleodden, E.T.Anderson, P. and Wyrobek, J.T.Acta Mater. 44 (1996) p.3585.CrossRefGoogle Scholar
34Nix, W.D.Mater. Sci. Eng., A 234 (1997) p.37.CrossRefGoogle Scholar
35Gouldstone, A.Koh, H.J.Zeng, K.Y.Giannakopoulos, A.E. and Suresh, S.Acta Mater. 48 (9)(2000) p.227.CrossRefGoogle Scholar
36Belak, J.Boersker, D.B. and Stowers, I.F.MRS Bull. XVIII (5)(1993) p.55.CrossRefGoogle Scholar
37Kelchner, C.L.Plimpton, S.J. and Hamilton, J.C.Phys. Rev. B 58 (17) (1998) p.11085.CrossRefGoogle Scholar
38Johnson, R.A.Phys. Rev. B 37 (1988) p.3924.CrossRefGoogle Scholar
39Johnson, R.A.Phys. Rev. B 39 (1989) p.12554.CrossRefGoogle Scholar
40Tang, M.Kubin, L.P. and Canova, G.R.Acta Mater. 46 (9)(1998) p.3221.CrossRefGoogle Scholar
41Tang, M.Devincre, B. and Kubin, L.P.Model. Simul. Mater. Sci. Eng. 7 (5)(1999) p.893.CrossRefGoogle Scholar
42Xu, W. and Moriarty, J.A.Comput. Mater. Sci. 9 (3–4) (1998) p.348.CrossRefGoogle Scholar
43Wang, G.Strachan, A.Cagin, T. and Goddard, W.A. III, Mater. Sci. Eng., A (2001) in press.Google Scholar
44Strachan, A.Wang, G.Cagin, T. and Goddard, W.A. III (private communication, 2000).Google Scholar
45Baskes, M.I.Hoagland, R.G. and Tsuji, T.Model. Simul. Mater. Sci. Eng. 6 (1)(1998) p.9.CrossRefGoogle Scholar
46Rhee, M.Zbib, H.M.Hirth, J.P.Huang, H. and Rubia, T. Diaz de la, Model. Simul. Mater. Sci. Eng. 6 (4)(1998) p.467.CrossRefGoogle Scholar
47Kubin, L.P.Devincre, B. and Tang, M.J.Comput.-Aided Mater. Des. 5 (1998) p.31.CrossRefGoogle Scholar
48Huang, H.C.Ghoniem, N.Rubia, T. Diaz de la, Rhee, M.Zbib, H. and Hirth, J.Trans. ASME J.Eng. Mater. Technol. 121 (2)(1999) p.143.CrossRefGoogle Scholar
49Shenoy, V.B.Kukta, R.V. and Phillips, R.Phys. Rev. Lett. 84 (7)(2000) p.1491.CrossRefGoogle Scholar
50Zbib, H.M.Rubia, T. Diaz de la, Rhee, M. and Hirth, J.P.J. Nucl. Mater. 276 (2000) p. 154.CrossRefGoogle Scholar
51Cuitiño, A.M., Koslowski, M.Ortiz, M. and Stainier, L. “APhase-Field Theory of Dislocation Dynamics, Strain Hardening and Hysteresis in Ductile Single Crystals at Low Temperatures,” Philos. Mag., A submitted for publication, 2000.Google Scholar
52Ortiz, M. and Popov, E.P.Proc. R. Soc., London Ser. A 379 (1982) p.439.Google Scholar
53Bodner, S.R. and Lindenfeld, A.Euro. J.Mech., A/Solids 14 (3)(1995) p.333.Google Scholar
54Sethna, J.P.Dahmen, K.Kartha, S.Krumhansl, J.A.Roberts, B.W. and Shore, J.D.Phys. Rev. Lett. 70 (1993) p.3347.CrossRefGoogle Scholar
55Dahmen, K.Kartha, S.Krumhansl, J.A.Roberts, B.W.Sethna, J.P. and Shore, J.D.J.Appl. Phys. 75 (1994) p.5946.CrossRefGoogle Scholar
56Xu, W. and Moriarty, J.A.Phys. Rev. B 54 (10) (1996) p.6941.CrossRefGoogle Scholar
57Ismail-Beigi, S. and Arias, T.A.Phys. Rev. Lett. 84 (7)(2000) p.1499.CrossRefGoogle Scholar
58Olmsted, D. and Phillips, R. (unpublished).Google Scholar
59Duesbery, M.S. and Xu, W.Scripta Mater. 39 (3)(1998) p.283.CrossRefGoogle Scholar