Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T20:49:41.375Z Has data issue: false hasContentIssue false

Microstructured Silica as an Optical-Fiber Material

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

Conventional optical fibers are fabricated by creating a preform from two different glasses and drawing the preform down at an elevated temperature to form a fiber. A waveguide core is created in the preform by embedding a glass with a higher refractive index within a lower-index “cladding” material. Over the last few years, researchers at several laboratories have demonstrated very different forms of optical-fiber waveguides by using a drawing process to produce two-dimensionally microstructured materials in the form of fine “photoniccrystal fibers” (PCFs). One such waveguide is represented schematically in Figure 1. It consists of a silica fiber with a regular pattern of tiny airholes that run down the entire length. The optical properties of the microstructured silica cladding material enable the formation of guided waves in the pure silica core.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kaiser, P. and Astle, H.W., Bell Sys. Tech. J. 53 (1974) p. 1021.CrossRefGoogle Scholar
2.Tonucci, R.J., Justus, B.L., Campillo, A.J., and Ford, C.E., Science 258 (1992) p. 783.CrossRefGoogle Scholar
3.Inoue, K., Wada, M., Sakoda, K., Yamanaka, A., Hayashi, M., and Haus, J.W., Jpn. J. Appl. Phys., Part 2: Lett. 33 (1994) p. L1463.Google Scholar
4.Birks, T.A., Knight, J.C., and Russell, P.St.J., Opt. Lett. 22 (1997) p. 961.CrossRefGoogle Scholar
5.Russell, P.St.J., Birks, T.A., and Lloyd-Lucas, F.D., in Confined Electrons and Photons, edited by Burstein, E. and Weisbuch, C. (Plenum Press, New York, 1995) p. 585.CrossRefGoogle Scholar
6.Cregan, R.F., Mangan, B.J., Knight, J.C., Birks, T.A., P.SRussell, t.J., Allen, D., and Roberts, P.J., Science 285 (1999) p. 1537.CrossRefGoogle Scholar
7.Birks, T.A., Roberts, P.J., Russell, P.St.J., Atkin, D.M., and Shepherd, T.J., Electron. Lett. 31 (1995) p. 1941.CrossRefGoogle Scholar
8.Knight, J.C., Birks, T.A., Russell, P.St.J., and Atkin, D.M., Opt. Lett. 21 (1996) p. 1547; errata 22 (1997) p. 484.CrossRefGoogle Scholar
9.Ortigosa-Blanch, A., Knight, J.C., Wadsworth, W.J., Mangan, B.J., Birks, T.A., and Russell, P.St.J., Opt. Lett. 25 (2000) p. 1325.CrossRefGoogle Scholar
10.Marcatili, E.A.J., Bell Sys. Tech. J. 43 (1964) p. 1783.CrossRefGoogle Scholar
11.Knight, J.C., Birks, T.A., Ortigosa-Blanch, A., Wadsworth, W.J., and Russell, P.St.J., IEEE Photon. Technol. Lett. 12 (2000) p. 807.CrossRefGoogle Scholar
12.Wadsworth, W.J., Knight, J.C., Ortigosa-Blanch, A., Arriaga, J., Silvestre, E., and Russell, P.St.J., Electron. Lett. 36 (2000) p. 53.CrossRefGoogle Scholar
13.Ranka, J.K., Windeler, R.S., and Stenz, A.J., Opt. Lett. 25 (2000) p. 25.CrossRefGoogle Scholar
14.Liu, X., Xu, C., Knox, W.H., Chandalia, J.K., Eggleton, B.J., Kosinski, S.G., and Windeler, R.S., Opt. Lett. 26 (2001) p. 358.CrossRefGoogle Scholar
15.Birks, T.A., Mogilevtsev, D., Knight, J.C., and Russell, P.St.J., IEEE Photon. Technol. Lett. 11 (1999) p. 674.CrossRefGoogle Scholar
16.Ferrando, A., Silvestre, E., Miret, J.J., and Andres, P., Opt. Lett. 25 (2000) p. 790.CrossRefGoogle Scholar