Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T05:33:31.989Z Has data issue: false hasContentIssue false

Metallic Hydrides II: Materials for Electrochemical Storage

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

For a century, nickel-cadmium (Ni-Cd) batteries have been widely used as electrochemical energy-storage cells. However, due to the rapid development of portable electronic devices and the increasing search for cleaner electric vehicles, new generations of batteries have been investigated during the last few decades. Among them, nickel metal hydride (Ni-MH) batteries, with their larger capacities and improved environmental compatibility, have shown their ability to replace Ni-Cd cells. The negative electrodes of Ni-MH batteries are made of reversibly hydride-forming intermetallic compounds. In this article, the crystallographic and thermodynamic properties of these compounds will be reviewed. Their hydrogen-absorption properties, their electrochemical performance, and the solutions that have been found to achieve reliable cycle life will be presented. The industrial market for Ni-MH batteries will also be discussed in comparison with other battery systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Van Vucht, J.H.N., Kuijpers, F.A., and Bruning, H.C.A.M., Philips Res. Rep. 25 (1970) p. 133.Google Scholar
2.Schlapbach, L., in Hydrogen in Intermetallic Compounds II: Topics in Applied Physics, Vol. 67, edited by Schlapbach, L. (Springer, Berlin, 1992) p. 328.Google Scholar
3.Ewe, H.H., Justi, E.W., and Stephan, K., Energy Conversion 13 (1973) p. 109.CrossRefGoogle Scholar
4.Will, F.G., U.S. Patent No. 3,874,958 (1975).Google Scholar
5.Bittner, H.F. and Badcock, C.C., J. Electrochem. Soc. 130 (1983) p. 193C.CrossRefGoogle Scholar
6.Percheron-Guégan, A., Lartigue, C., and Achard, J.-C., J. Less-Common Met. 109 (1985) p. 287.CrossRefGoogle Scholar
7.Buschow, K.H.J. and van Mal, H.H., J. Less-Common Met. 29 (1972) p. 203.CrossRefGoogle Scholar
8.Notten, P.H.L., Einerhand, R.E.F., and Daams, J.L.C., J. Alloys Compd. 210 (1994) p. 221.CrossRefGoogle Scholar
9.Notten, P.H.L., Daams, J.L.C., and Einerhand, R.E.F., J. Alloys Compd. 210 (1994) p. 233.CrossRefGoogle Scholar
10.Lartigue, C., Percheron-Guégan, A., Achard, J.-C., and Soubeyroux, J.-L., J. Less-Common Met. 113 (1985) p. 127.CrossRefGoogle Scholar
11.Percheron-Guégan, A. and Lartigue, C., Mater. Sci. Forum 31 (1988) p. 125.CrossRefGoogle Scholar
12.Sakai, T., Oguro, K., Miyamura, H., Kuriyama, N., Kato, A., and Ishikawa, H., J. Less-Common Met. 161 (1990) p. 193.CrossRefGoogle Scholar
13.Achard, J.-C., Percheron-Guégan, A., Diaz, H., Briaucourt, F., and Demany, F., in Proc. 2nd Int. Congress on Hydrogen in Metals (Pergamon Press, Oxford, 1977) p. 1E12.Google Scholar
14.Mendelsohn, M.H., Gruen, D.M., and Dwight, A.E., Nature 269 (1977) p. 45.CrossRefGoogle Scholar
15.Miedema, A.R., J. Less-Common Met. 32 (1973) p. 117.CrossRefGoogle Scholar
16.Miedema, A.R., Boom, R., and de Boer, F.R., J. Less-Common Met. 41 (1975) p. 283.CrossRefGoogle Scholar
17.Griessen, R. and Driessen, A., Phys. Rev. B 30 (8) (1984) p. 4372.CrossRefGoogle Scholar
18.Westlake, D.G., J. Less-Common Met. 90 (1983) p. 251.CrossRefGoogle Scholar
19.Switendick, A.C., Z. Phys. Chem. NF 117 (1979) p. 89.CrossRefGoogle Scholar
20.Willems, J.J.G., Suppl. Philips J. Res. 39 (1984) (Suppl. 1) p. 1.Google Scholar
21.Maurel, F., Knosp, B., and Backhaus, M.-Ricoult, J. Electrochem. Soc. 147 (1) (2000) p. 78.CrossRefGoogle Scholar
22.Merzouki, A., Cachet-Vivier, C., Vivier, V., Nédélec, J.-Y., Yu, L.T., Haddaoui, N., Joubert, J.-M., and Percheron-Guégan, A., J. Power Sources 109 (2002) p. 281.CrossRefGoogle Scholar
23.Reilly, J.J., Adzic, G.D., Johnson, J.R., Vogt, T., Mukerjee, S., and McBreen, J., J. Alloys Compd. 293–295 (1999) p. 569.CrossRefGoogle Scholar
24.Mukerjee, S., McBreen, J., Reilly, J.J., Johnson, J.R., Adzic, G., Petrov, K., Kumar, M.P.S., Zhang, W., and Srinivasan, S., J. Electrochem. Soc. 142 (7) (1995) p. 2278.CrossRefGoogle Scholar
25.Paul-Boncour, V., Joubert, J.-M., Latroche, M., and Percheron-Guégan, A., J. Alloys Compd. 330–332 (2002) p. 246.CrossRefGoogle Scholar
26.Ogawa, H., Ikoma, M., Kawano, H., and Matsumoto, I., J. Power Sources 12 (1988) p. 393.Google Scholar
27.Chartouni, D. and Gross, K., J. Electrochem. Soc. 148 (3) (2001) p. A241.CrossRefGoogle Scholar
28.Latroche, M., Percheron-Guégan, A., and Bourée-Vigneron, F., J. Alloys Compd. 265 (1–2) (1998) p. 209.CrossRefGoogle Scholar
29.Latroche, M., Percheron-Guégan, A., Chabre, Y., Bouet, J., Pannetier, J., and Ressouche, E., J. Alloys Compd. 231 (1995) p. 537.CrossRefGoogle Scholar
30.Notten, P.H.L., Latroche, M., and Percheron-Guégan, A., J. Electrochem. Soc. 146 (1999) p. 3181.CrossRefGoogle Scholar
31.Latroche, M., Chabre, Y., Percheron-Guégan, A., Isnard, O., and Knosp, B., J. Alloys Compd. 330–332 (2002) p. 787.CrossRefGoogle Scholar
32.Notten, P.H.L. and Hokkeling, P., J. Electrochem. Soc. 138 (7) (1991) p. 1877.CrossRefGoogle Scholar
33.Ikoma, M., Komori, K., Kaida, S., and Iwakura, C., J. Alloys Compd. 284 (1999) p. 92.CrossRefGoogle Scholar
34.Sakashita, M., Li, Z.P., and Suda, S., J. Alloys Compd. 253–254 (1997) p. 500.CrossRefGoogle Scholar
35.Sun, Y.-M., Ywata, K., Chiba, S., Matsuyama, Y., and Suda, S., J. Alloys Compd. 253–254 (1997) p. 520.CrossRefGoogle Scholar
36.Geng, M., J. Alloys Compd. 206 (1994) p. L3.CrossRefGoogle Scholar
37.Sakai, T., Yuasa, A., Ishikawa, H., Miyamura, H., and Kuriyama, N., J. Less-Common Met. 172–174 (1991) p. 1194.CrossRefGoogle Scholar
38.Cuevas, F., Joubert, J.-M., Latroche, M., and Percheron-Guégan, A., Appl. Phys. A 72 (2001) p. 225.CrossRefGoogle Scholar
39.Ovshinsky, S.R., Fetchenko, M.A., and Ross, J., Science 260 (1993) p. 176.CrossRefGoogle Scholar