Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T12:47:57.112Z Has data issue: false hasContentIssue false

Metal oxide nanomaterials for solar hydrogen generation from photoelectrochemical water splitting

Published online by Cambridge University Press:  17 January 2011

Jin Zhong Zhang*
Affiliation:
University of California, Santa Cruz, CA 95064, USA, [email protected]
Get access

Abstract

This review focuses on recent developments in the study of hydrogen generation from water splitting using photoelectrochemical (PEC) cells based on metal oxide (MO) nanomaterials. The emphasis is on the unique properties of MO nanostructures and their advantages as well as limitations for PEC solar hydrogen generation. While abundant and stable, metal oxide nanomaterials tend to have weak visible light absorption that limits their use for solar energy conversion. In addition, MO nanomaterials tend to exhibit a high density of trap states or defect sites that limit their overall efficiency. Different strategies have been developed to enhance visible light absorption (e.g., doping, dye, or quantum dot sensitization and band structure engineering using composite structures) as well as to enhance transport by reducing the density of trap states via surface modification, improving crystallinity, or using 1D structures. In some cases, combining different strategies has led to strong synergistic effects. Recent studies point to the importance and promise of engineering electronic band structure for improving PEC performance of MO nanostructures for hydrogen generation and other potential applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ogden, J.M., Annu. Rev. Energy. Env. 24, 227 (1999).Google Scholar
2.Bak, T., Nowotny, J., Rekas, M., Sorrell, C.C., Int. J. Hydrogen Energy 27, 991 (2002).CrossRefGoogle Scholar
3.Dresselhaus, M.S., Crabtree, G.W., Buchanan, M.V., Eds., Basic Research Needs for the Hydrogen Economy (DOE Office of Basic Energy Sciences, Washington, DC, 2003), p. 178.Google Scholar
4.Grimes, C.A., Varghese, O.K., Ranjan, S., Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis (Springer, New York, 2008).CrossRefGoogle Scholar
5.Vayssieres, L., On Solar Hydrogen and Nanotechnology (Wiley, Singapore, 2009), p. 680.Google Scholar
6.Li, Y., Zhang, J.Z., Laser Photonics Rev. 4, 517 (2010).CrossRefGoogle Scholar
7.Singh, S.B., Sharma, H.B., Sarma, H.N.K., Phanjoubam, S., Mod. Phys. Lett. B 22, 693 (2008).Google Scholar
8.Schuth, F., Eur. Phys. J. Spec. Top. 176, 155 (2009).CrossRefGoogle Scholar
9.Kong, Y.H., Hua, B., Pu, J.A., Chi, B., Jian, L., Int. J. Hydrogen Energy 35, 4592 (2010).CrossRefGoogle Scholar
10.Frenkel, J., Phys. Rev. 37, 17 (1931).CrossRefGoogle Scholar
11.Wannier, G.H., Phys. Rev. 52, 0191 (1937).Google Scholar
12.Zhang, J.Z., J. Phys. Chem. Lett. 1, 1111 (2010).Google Scholar
13.Miller, E.L., in On Solar Hydrogen and Nanotechnology, Vayssieres, L., Ed. (Wiley, Singapore, 2009), p. 3.Google Scholar
14.Bedja, I., Hotchandani, S., Carpentier, R., Vinodgopal, K., Kamat, P.V., Thin Solid Films 247, 195 (1994).CrossRefGoogle Scholar
15.Wang, H.L., Lindgren, T., He, J.J., Hagfeldt, A., Lindquist, S.E., J. Phys. Chem. B 104, 5686 (2000).CrossRefGoogle Scholar
16.Krasovec, U.O., Topic, M., Georg, A., Georg, A., Drazic, G., J. Sol-Gel Sci. Tech. 36, 45 (2005).Google Scholar
17.Ramana, C.V., Utsunomiya, S., Ewing, R.C., Julien, C.M., Becker, U., J. Phys. Chem. B 110, 10430 (2006).CrossRefGoogle Scholar
18.Wolcott, A., Kuykendall, T.R., Chen, W., Chen, S., Zhang, J.Z., J. Phys. Chem. B 110, 25288 (2006).CrossRefGoogle Scholar
19.Ahn, K.S., Shet, S., Deutsch, T., Jiang, C.S., Yan, Y.F., Al-Jassim, M., Turner, J., J. Power Sources 176, 387 (2008).Google Scholar
20.Ahn, K.S., Yan, Y., Lee, S.H., Deutsch, T., Turner, J., Tracy, C.E., Perkins, C.L., Al-Jassim, M.M., J. Electrochem. Soc. 154, B956 (2007).Google Scholar
21.Yan, Y., Ahn, K.S., Shet, S., Deutsch, T., Huda, M., Wei, S.H., Turner, J., Al-Jassim, M.M., Solar Hydrogen and Nanotechnology II Proc. SPIE 6650, 66500H (2007).Google Scholar
22.Lindgren, T., Wang, H.L., Beermann, N., Vayssieres, L., Hagfeldt, A., Lindquist, S.E., Solar Energy Mater. Solar Cells 71, 231 (2002).Google Scholar
23.Satsangi, V.R., Kumari, S., Singh, A.P., Shrivastav, R., Dass, S., Int. J. Hydrogen Energy 33, 312 (2008).Google Scholar
24.Saretni-Yarahmadi, S., Wijayantha, K.G.U., Tahir, A.A., Vaidhyanathan, B., J. Phys. Chem. C 113, 4768 (2009).Google Scholar
25.Mishra, P.R., Shukla, P.K., Srivastava, O.N., Int. J. Hydrogen Energy 32, 1680 (2007).Google Scholar
26.Zhao, H.L., Jiang, D.L., Zhang, S.L., Wen, W., J. Catalysis 250, 102 (2007).CrossRefGoogle Scholar
27.Chen, D., Gao, Y.F., Wang, G., Zhang, H., Lu, W., Li, J.H., J. Phys. Chem. C 111, 13163 (2007).Google Scholar
28.Lin, C.J., Lu, Y.T., Hsieh, C.H., Chien, S.H., Appl. Phys. Lett. 94, 113102 (2009).Google Scholar
29.Hwang, Y.J., Boukai, A., Yang, P.D., Nano Lett. 9, 410 (2009).Google Scholar
30.Eder, D., Motta, M., Windle, A.H., Nanotechnology 20, 055602 (2009).CrossRefGoogle Scholar
31.Wolcott, A., Smith, W.A., Kuykendall, T.R., Zhao, Y.P., Zhang, J.Z., Small 5, 104 (2009).CrossRefGoogle Scholar
32.Mor, G.K., Varghese, O.K., Wilke, R.H.T., Sharma, S., Shankar, K., Latempa, T.J., Choi, K.S., Grimes, C.A., Nano Lett. 8, 1906 (2008).Google Scholar
33.Cui, X., Ma, M., Zhang, W., Yang, Y.C., Zhang, Z.J., Electrochem. Commun. 10, 367 (2008).Google Scholar
34.Ni, M., Leung, M.K.H., Leung, D.Y.C., Sumathy, K., Renewable Sustainable Energy Rev. 11, 401 (2007).Google Scholar
35.Park, J.H., Kim, S., Bard, A.J., Nano Lett. 6, 24 (2006).Google Scholar
36.Takabayashi, S., Nakamura, R., Nakato, Y., J. Photochem. Photobiol., A 166, 107 (2004).CrossRefGoogle Scholar
37.Khan, S.U.M., Sultana, T., Sol. Energy Mater. Sol. Cells 76, 211 (2003).Google Scholar
38.Beermann, N., Vayssieres, L., Lindquist, S.E., Hagfeldt, A., J. Electrochem. Soc. 147, 2456 (2000).Google Scholar
39.Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., Grimes, C.A., Nano Lett. 5, 191 (2005).Google Scholar
40.Chen, S.G., Paulose, M., Ruan, C., Mor, G.K., Varghese, O.K., Kouzoudis, D., Grimes, C.A., J. Photochem. Photobiol. A 177, 177 (2006).Google Scholar
41.Park, J.H., Park, O.O., Kim, S., Appl. Phys. Lett. 89, 163106 (2006).Google Scholar
42.Mohapatra, S.K., Mahajan, V.K., Misra, M., Nanotechnology 18 (2007).Google Scholar
43.Mohapatra, S.K., Misra, M., Mahajan, V.K., Raja, K.S., J. Phys. Chem. C 111, 8677 (2007).CrossRefGoogle Scholar
44.Xu, C.K., Shaban, Y.A., Ingler, W.B., Khan, S.U.M., Sol. Energy Mater. Sol. Cells 91, 938 (2007).Google Scholar
45.Yin, Y.X., Jin, Z.G., Hou, F., Nanotechnology 18 (2007).Google Scholar
46.Varghese, O.K., Grimes, C.A., Sol. Energy Mater. Sol. Cells 92, 374 (2008).Google Scholar
47.Cowan, A.J., Tang, J.W., Leng, W.H., Durrant, J.R., Klug, D.R., J. Phys. Chem. C 114, 4208 (2010).Google Scholar
48.Hensel, J., Wang, G.M., Li, Y., Zhang, J.Z., Nano Lett. 10, 478 (2010).Google Scholar
49.Fei, H.H., Yang, Y.C., Rogow, D.L., Fan, X.J., Oliver, S.R.J., ACS Appl. Mater. Interfaces 2, 974 (2010).CrossRefGoogle Scholar
50.Liu, J., Kim, A.Y., Wang, L.Q., Palmer, B.J., Chen, Y.L., Bruinsma, P., Bunker, B.C., Exarhos, G.J., Graff, G.L., Rieke, P.C., Fryxell, G.E., Virden, J.W., Tarasevich, B.J., Chick, L.A., Adv. Colloid Interface Sci. 69, 131 (1996).Google Scholar
51.Pan, Z.W., Dai, Z.R., Wang, Z.L., Science 291, 1947 (2001).Google Scholar
52.Wolcott, A., Smith, W.A., Kuykendall, T.R., Zhao, Y.P., Zhang, J.Z., Adv. Func. Mater. 19, 1849 (2009).Google Scholar
53.Tang, D.M., Liu, G., Li, F., Tan, J., Liu, C., Lu, G.Q., Cheng, H.M., J. Phys. Chem. C 113, 11035 (2009).Google Scholar
54.Yang, X., Wolcottt, A., Wang, G., Sobo, A., Fitzmorris, R.C., Qian, F., Zhang, J.Z., Li, Y., Nano Lett. 9, 2331 (2009).Google Scholar
55.Anderson, N.A., Lian, T., Annu. Rev. Phys. Chem. 56, 491 (2005).Google Scholar
56.Gupta, M., Sharma, V., Shrivastava, J., Solanki, A., Singh, A.P., Satsangi, V.R., Dass, S., Shrivastav, R., Bull. Mater. Science 32, 23 (2009).Google Scholar
57.Shet, S., Ahn, K.S., Deutsch, T., Wang, H.L., Nuggehalli, R., Yan, Y.F., Turner, J., Al-Jassim, M., J. Power Sources 195, 5801 (2010).CrossRefGoogle Scholar
58.Ahn, K.S., Yan, Y., Shet, S., Jones, K., Deutsch, T., Turner, J., Al-Jassim, M., Appl. Phys. Lett. 93, 163117 (2008).Google Scholar
59.Wang, X.N., Zhu, H.J., Xu, Y.M., Wang, H., Tao, Y., Hark, S., Xiao, X.D., Li, Q.A., ACS Nano 4, 3302 (2010).Google Scholar
60.Hotchandani, S., Bedja, I., Fessenden, R.W., Kamat, P.V., Langmuir 10, 17 (1994).Google Scholar
61.Wang, H.L., Deutsch, T., Turner, J.A., J. Electrochem. Soc. 155, F91 (2008).CrossRefGoogle Scholar
62.Alexander, B.D., Kulesza, P.J., Rutkowska, L., Solarska, R., Augustynski, J., J. Mater. Chem. 18, 2298 (2008).Google Scholar
63.Hong, S.J., Jun, H., Borse, P.H., Lee, J.S., Int. J. Hydrogen Energy 34, 3234 (2009).CrossRefGoogle Scholar
64.Chakrapani, V., Thangala, J., Sunkara, M.K., Int. J. Hydrogen Energy 34, 9050 (2009).Google Scholar
65.Alexander, B.D., Augustynski, J., in On Solar Hydrogen and Nanotechnology, Vayssieres, L., Ed. (Wiley, Singapore, 2009), p. 333.Google Scholar
66.Cornell, R.M., Schwertmann, U., The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses (VCH, New York, 1996).Google Scholar
67.Tahir, A.A., Wijayantha, K.G.U., Saremi-Yarahmadi, S., Mazhar, M., McKee, V., Chem. Mater. 21, 3763 (2009).Google Scholar
68.Boumaza, S., Boudjemaa, A., Omeiri, S., Bouarab, R., Bouguelia, A., Trari, M., Sol. Energy 84, 715 (2010).Google Scholar
69.Cherepy, N.J., Liston, D.B., Lovejoy, J.A., Deng, H.M., Zhang, J.Z., J. Phys. Chem. B 102, 770 (1998).Google Scholar
70.Satsangi, V.R., Dass, S., Shrivastav, R., in On Solar Hydrogen and Nanotechnology, Vayssieres, V., Editor. (Wiley, Singapore, 2009), p. 349.Google Scholar
71.LaTempa, T.J., Feng, X.J., Paulose, M., Grimes, C.A., J. Phys. Chem. C 113, 16293 (2009).Google Scholar
72.Mao, A., Han, G.Y., Park, J.H., J. Mater. Chem. 20, 2247 (2010).Google Scholar
73.Nasr, C., Kamat, P.V., Hotchandani, S., J. Phys. Chem. B 102, 10047 (1998).Google Scholar
74.Saeki, I., Okushi, N., Konno, H., Furuichi, R., J. Electrochem. Soc. 143, 2226 (1996).CrossRefGoogle Scholar
75.Kumara, G., Tennakone, K., Kottegoda, I.R.M., Bandaranayake, P.K.M., Konno, A., Okuya, M., Kaneko, S., Murakami, K., Semicon. Sci. Tech. 18, 312 (2003).Google Scholar
76.Kuang, S.Y., Yang, L.X., Luo, S.L., Cai, Q.Y., Appl. Surf. Sci. 255, 7385 (2009).Google Scholar
77.Cahen, D., Hodes, G., Gratzel, M., Guillemoles, J.F., Riess, I., J. Phys. Chem. B 104, 2053 (2000).Google Scholar
78.Gratzel, M., Nature 414, 338 (2001).Google Scholar
79.Herrera, F.V., Grez, P., Schrebler, R., Ballesteros, L.A., Munoz, E., Cordova, R., Altamirano, H., Dalchiele, E.A., J. Electrochem. Soc. 157, D302 (2010).Google Scholar
80.Caramori, S., Cristino, V., Argazzi, R., Meda, L., Bignozzi, C.A., Inorg. Chem. 49, 3320 (2010).Google Scholar
81.Hoyle, R., Sotomayor, J., Will, G., Fitzmaurice, D., J. Phys. Chem. B 101, 10791 (1997).CrossRefGoogle Scholar
82.Youngblood, W.J., Lee, S.H.A., Kobayashi, Y., Hernandez-Pagan, E.A., Hoertz, P.G., Moore, T.A., Moore, A.L., Gust, D., Mallouk, T.E., J. Am. Chem. Soc. 131, 926 (2009).Google Scholar
83.Park, H., Choi, W., Hoffmann, M.R., J. Mater. Chem. 18, 2379 (2008).Google Scholar
84.Yamada, S., Nosaka, A.Y., Nosaka, Y., J. Electroanal. Chem. 585, 105 (2005).Google Scholar
85.Chi, C.F., Lee, Y.L., Weng, H.S., Nanotechnology 19 (2008).CrossRefGoogle Scholar
86.Liu, D., Kamat, P.V., J. Phys. Chem. 97, 10769 (1993).Google Scholar
87.Hotchandani, S., Kamat, P.V., J. Phys. Chem. 96, 6834 (1992).Google Scholar
88.Kamat, P.V., J. Phys. Chem. C 111, 2834 (2007).Google Scholar
89.Tak, Y., Hong, S.J., Lee, J.S., Yong, K., Cryst. Growth Des. 9, 2627 (2009).CrossRefGoogle Scholar
90.Kongkanand, A., Tvrdy, K., Takechi, K., Kuno, M., Kamat, P.V., J. Am. Chem. Soc. 130, 4007 (2008).Google Scholar
91.Anpo, M., Matsuoka, M., Mishima, H., Yamashita, H., Res. Chem. Intermed. 23, 197 (1997).CrossRefGoogle Scholar
92.Mor, G.K., Prakasam, H.E., Varghese, O.K., Shankar, K., Grimes, C.A., Nano Lett. 7, 2356 (2007).Google Scholar
93.Ingler, W.B., Khan, S.U.M., Int. J. Hydrogen Energy 30, 821 (2005).Google Scholar
94.Randeniya, L.K., Bendavid, A., Martin, P.J., Preston, E.W., J. Phys. Chem. C 111, 18334 (2007).Google Scholar
95.Reyes-Gil, K.R., Reyes-Garcia, E.A., Raftery, D., J. Phys. Chem. C 111, 14579 (2007).CrossRefGoogle Scholar
96.Sakthivel, S., Kisch, H., Angew. Chem. Int. Ed. 42, 4908 (2003).Google Scholar
97.Kato, H., Kudo, A., J. Phys. Chem. B 106, 5029 (2002).Google Scholar
98.Choi, W.Y., Termin, A., Hoffmann, M.R., J. Phys. Chem. 98, 13669 (1994).Google Scholar
99.Khan, S.U.M., Al-Shahry, M., , I.J.W. B., Science 297, 2243 (2002).Google Scholar
100.Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., Science 293, 269 (2001).Google Scholar
101.Gole, J.L., Stout, J.D., Burda, C., Lou, Y.B., Chen, X.B., J. Phys. Chem. B 108, 1230 (2004).Google Scholar
102.Shen, Q., Katayama, K., Sawada, T., Yamaguchi, M., Toyoda, T., Jpn. J. Appl. Phys., Part 1 45, 5569 (2006).Google Scholar
103.Murakami, Y., Kasahara, B., Nosaka, Y., Chem. Lett. 36, 330 (2007).Google Scholar
104.Burda, C., Lou, Y.B., Chen, X.B., Samia, A.C.S., Stout, J., Gole, J.L., Nano Lett. 3, 1049 (2003).Google Scholar
105.Sathish, M., Viswanathan, B., Viswanath, R.P., Gopinath, C.S., Chem. Mater. 17, 6349 (2005).Google Scholar
106.Nakano, Y., Morikawa, T., Ohwaki, T., Taga, Y., Appl. Phys. Lett. 86, 132104 (2005).Google Scholar
107.Yang, S.W., Gao, L., J. Inorg. Mater. 20, 785 (2005).Google Scholar
108.Gandhe, A.R., Naik, S.P., Fernandes, J.B., Microporous Mesoporous Mater. 87, 103 (2005).Google Scholar
109.Yamada, K., Nakamura, H., Matsushima, S., Yamane, H., Haishi, T., Ohira, K., Kumada, K., C.R. Chim. 9, 788 (2006).CrossRefGoogle Scholar
110.Xu, P., Mi, L., Wang, P.N., J. Cryst. Growth 289, 433 (2006).CrossRefGoogle Scholar
111.Chen, H.Y., Nambu, A., Wen, W., Graciani, J., Zhong, Z., Hanson, J.C., Fujita, E., Rodriguez, J.A., J. Phys. Chem. C 111, 1366 (2007).Google Scholar
112.Lopez-Luke, T., Wolcott, A., Xu, L.P., Chen, S.W., Wcn, Z.H., Li, J.H., De La Rosa, E., Zhang, J.Z., J. Phys. Chem. C 112, 1282 (2008).Google Scholar
113.Ingler, W.B., Khan, S.U.M., Electrochem. Solid-State Lett. 9, G144 (2006).Google Scholar
114.Morisaki, H., Watanabe, T., Iwase, M., Yazawa, K., Appl. Phys. Lett. 29, 338 (1976).Google Scholar
115.Miller, E.L., Rocheleau, R.E., Deng, X.M., Int. J. Hydrogen Energy 28, 615 (2003).Google Scholar
116.Lee, Y.L., Chi, C.F., Liau, S.Y., Chem. Mater. 22, 922 (2010).Google Scholar
117.Lee, Y.L., Lo, Y.S., Adv. Funct. Mater. 19, 604 (2009).CrossRefGoogle Scholar
118.Pan, D.C., Wang, Q., Jiang, S.C., Ji, X.L., An, L.J., J. Phys. Chem. C 111, 5661 (2007).Google Scholar
119.Wang, G.M., Yang, X.Y., Qian, F., Zhang, J.Z., Li, Y., Nano Lett. 10, 1088 (2010).Google Scholar