Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-24T08:48:09.913Z Has data issue: false hasContentIssue false

Metal hydrides for smart window and sensor applications

Published online by Cambridge University Press:  07 June 2013

K. Yoshimura
Affiliation:
Advanced Industrial Science and Technology, Nagoya, Japan; [email protected]
C. Langhammer
Affiliation:
Department of Applied Physics, Chalmers University of Technology, Sweden; [email protected]
B. Dam
Affiliation:
Chemical Engineering Department, Delft University of Technology, The Netherlands; [email protected]
Get access

Abstract

The hydrogenation of metals often leads to changes in optical properties in the visible range. This allows for fundamental studies of the hydrogenation process, as well as the exploration of various applications using these optical effects. Here, we focus on recent developments in metal hydride-based optical fiber and plasmonic sensors and smart windows. Both applications benefit from the existence of a reflective metallic state, which is lost on hydrogenation and allows for large reversible optical changes. In this article, we review the status of both technologies and their prospects for applications.

Type
Metal hydrides for clean energy applications
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Huiberts, J.N., Griessen, R., Rector, J.H., Wijngaarden, R.J., Dekker, J.P., de Groot, D.G., Koeman, N.J., Nature 380, 231 (1996).CrossRefGoogle Scholar
Kerssemakers, J.W.J., van der Molen, S.J., Gunther, R., Dam, B., Griessen, R., Phys. Rev. B 65, 075417 (2002).CrossRefGoogle Scholar
Hoekstra, A.F.Th., Roy, A.S., Rosenbaum, T.F., Griessen, R., Wijngaarden, R.J., Koeman, N.J., Phys. Rev. Lett. 86, 5349 (2001).CrossRefGoogle Scholar
van Gogh, A.T.M., Nagengast, D.G., Kooij, E.S., Koeman, N.J., Rector, J.H., Griessen, R., Flipse, C.F.J., Smeets, R.J.J.G.A.M., Phys. Rev. B 63, 195105 (2001).CrossRefGoogle Scholar
Olk, C.H., Tibbetts, G.G., Simon, D., Moleski, J.J., J. Appl. Phys. 94, 720 (2003).CrossRefGoogle Scholar
Dam, B., Gremaud, R., Broedersz, C., Griessen, R., Scripta Mater. 56, 853 (2007).CrossRefGoogle Scholar
Gremaud, R., Slaman, M., Schreuders, H., Dam, B., Griessen, R., Appl. Phys. Lett. 91, 231916 (2007).CrossRefGoogle Scholar
Kalisvaart, W.P., Luber, E.J., Poirier, E., Harrower, C.T., Teichert, A., Wallacher, D., Grimm, N., Steitz, R., Fritzsche, H., Mitlin, D., J. Phys. Chem. C 116, 5868 (2012).CrossRefGoogle Scholar
Mooij, L.P.A., Baldi, A., Boelsma, C., Shen, K., Wagemaker, M., Pivak, Y., Schreuders, H., Griessen, R., Dam, B., Adv. Energy Mater. 1, 754 (2011).CrossRefGoogle Scholar
Northemann, K., Pundt, A., Phys. Rev. B 83, 155420 (2011); Y. Pivak, H. Schreuders, B. Dam, Crystals 2, 710 (2012).CrossRefGoogle Scholar
Felderhoff, M., Bogdanović, B., Int. J. Mol. Sci. 10, 325 (2009).CrossRefGoogle Scholar
Mardilovich, P.P., She, Y., Ma, Y.H., Rei, M.H., AlChE J. 44, 310 (1998).CrossRefGoogle Scholar
Butler, M.A., Appl. Phys. Lett. 45, 1007 (1984); M.A. Butler, Sens. Actuators, B 22, 155 (1994).CrossRefGoogle Scholar
Mercier, V.M.M., van der Sluis, P., Solid State Ionics 145, 17 (2001).CrossRefGoogle Scholar
Armitage, R., Rubin, M., Richardson, T., O’Brien, N., Chen, Y., Appl. Phys. Lett. 75, 1863 (1999).CrossRefGoogle Scholar
Jelle, B.P., Hynd, A., Gustavsen, A., Arasteh, D., Goudey, H., Hart, R., Sol. Energy Mater. Sol. Cells 96, 1 (2012).CrossRefGoogle Scholar
Bange, K., Sol. Energy Mater. Sol. Cells 58, 1 (1999).CrossRefGoogle Scholar
Janner, A.M., van der Sluis, P., Mercier, V., Electrochim. Acta 46, 2173 (2001).CrossRefGoogle Scholar
Richardson, T.J., Slack, J.L., Armitage, R.D., Kostecki, R., Farangis, B., Rubin, M.D., Appl. Phys. Lett. 78, 3047 (2001).CrossRefGoogle Scholar
Myers, W.R., Wang, L.-W., Richardson, T.J., Rubin, M.D., J. Appl. Phys. 91, 4879 (2002).CrossRefGoogle Scholar
Blomqvist, H., Noreus, D., J. Appl. Phys. 91, 5141 (2002).CrossRefGoogle Scholar
Yoshimura, K., Yamada, Y., Okada, M., Appl. Phys. Lett. 81, 4709 (2002).CrossRefGoogle Scholar
Bao, S., Yamada, Y., Tajima, K., Okada, M., Yoshimura, K., Jpn. J. Appl. Phys. 46, L13 (2006).CrossRefGoogle Scholar
Yamada, Y., Bao, S., Tajima, K., Okada, M., Yoshimura, K., Appl. Phys. Lett. 94, 191910 (2009).CrossRefGoogle Scholar
Yoshimura, K., Yamada, Y., Bao, S., Okada, M., Jpn. J. Appl. Phys. 46, 4260 (2007).CrossRefGoogle Scholar
Bao, S., Yamada, Y., Okada, M., Yoshimura, K., Jpn. J. Appl. Phys. 45, L588 (2006).CrossRefGoogle Scholar
Bao, S., Yamada, Y., Tajima, K., Okada, M., Yoshimura, K., Sol. Energy Mater. Sol. Cells 93, 1642 (2009).CrossRefGoogle Scholar
Tajima, K., Yamada, Y., Bao, S., Okada, M., Yoshimura, K., Electrochem. Solid-State Lett. 10, J52 (2007).CrossRefGoogle Scholar
Tajima, K., Yamada, Y., Bao, S., Okada, M., Yoshimura, K., Appl. Phys. Lett. 91, 51908 (2007).CrossRefGoogle Scholar
Tajima, K., Yamada, Y., Yoshimura, K., J. Electrochem. Soc. 154, J267 (2007).CrossRefGoogle Scholar
Tajima, K., Yamada, Y., Bao, S., Okada, M., Yoshimura, K., Appl. Phys. Lett. 92, 41912 (2008).CrossRefGoogle Scholar
Yamada, Y., Bao, S., Tajima, K., Okada, M., Yoshimura, K., Roos, A., Sol. Energy Mater. Sol. Cells 92, 1617 (2008).CrossRefGoogle Scholar
Yoshimura, K., Yamada, Y., Bao, S., Tajima, K., Okada, M., Sol. Energy Mater. Sol. Cells 93, 2138 (2009).CrossRefGoogle Scholar
Georg, A., Graf, W., Schweiger, D., Wittwer, V., Nitz, P., Wilson, H.R., Sol. Energy 62, 215 (1998).CrossRefGoogle Scholar
Wagus, C., Guarr, T., Berman, J., Hayes, C., Myser, M., Durschinger, J., Ander, G., Demiryont, H., Settlemyre, K., Hughes, G., Thurm, D., Levi, M., Mifflin, T., “Advancement of Electrochromic Windows” (Pier Final Project Report of California Energy Commission, CEC-500–2006–052, 2006).Google Scholar
Hübert, T., Boon-Brett, L., Black, G., Banach, U., Sens. Actuators, B 157, 329 (2011).CrossRefGoogle Scholar
Westerwaal, R., Duim, N., Nieuwenhuijse, I., Perrotton, C., Dabirian, A., van Leeuwen, J.M., Palmisano, V., Dam, B., Sens. Actuators, B 165, 88 (2012).CrossRefGoogle Scholar
Slaman, M., Dam, B., Pasturel, M., Borsa, D.M., Schreuders, H., Rector, J.H., Griessen, R., Sens. Actuators, B 123, 538 (2007).CrossRefGoogle Scholar
Gremaud, R., Baldi, A., Gonzalez-Silveira, M., Dam, B., Griessen, R., Phys. Rev. B 77 144204 (2008).CrossRefGoogle Scholar
Slaman, M., Westerwaal, R., Schreuders, H., Dam, B., Proc. SPIE 8368, 836805 (2012).CrossRefGoogle Scholar
Kreibig, U., Vollmer, M., Optical Properties of Metal Clusters (Springer-Verlag, Berlin/Heidelberg, 1995), vol. 25.CrossRefGoogle Scholar
Langhammer, C., Larsson, E.M., ACS Catal. 2, 2036 (2012).CrossRefGoogle Scholar
Bevenot, X., Troullet, A., Veillas, C., Gagnaire, H., Clement, M., Meas. Sci. Technol. 13, 118 (2002).CrossRefGoogle Scholar
Chadwick, B., Gal, M., Appl. Surf. Sci. 68, 135 (1993).CrossRefGoogle Scholar
Perrotton, C., Westerwaal, R.J., Javahiraly, N., Slaman, M., Schreuders, H., Dam, B., Meyrueis, P., Opt. Express 41, 382 (2013).CrossRefGoogle Scholar
Zoric, I., Zäch, M., Kasemo, B., Langhammer, C.G., ACS Nano 5, 2535 (2011).CrossRefGoogle Scholar
Englebienne, P., Analyst 123, 1599 (1998).CrossRefGoogle Scholar
Anker, J.N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J., Van Duyne, R.P., Nat. Mater. 7, 442 (2008).CrossRefGoogle Scholar
McFarland, A.D., Van Duyne, R.P., Nano Lett. 3, 1057 (2003).CrossRefGoogle Scholar
Langhammer, C., Larsson, E.M., Kasemo, B., Zoric, I., Nano Lett. 10, 3529 (2010).CrossRefGoogle Scholar
Larsson, E.M., Langhammer, C., Zoric, I., Kasemo, B., Science 326, 1091 (2009).CrossRefGoogle Scholar
Langhammer, C., Zhdanov, V.P., Zoric, I., Kasemo, B., Phys. Rev. Lett. 104, 135502 (2010).CrossRefGoogle Scholar
Langhammer, C., Zoric, I., Kasemo, B., Clemens, B.M., Nano Lett. 7, 3122 (2007).CrossRefGoogle Scholar
Shegai, T., Johansson, P., Langhammer, C., Kall, M., Nano Lett. 12, 2464 (2012).CrossRefGoogle Scholar
Shegai, T., Langhammer, C., Adv. Mater. 23, 4409 (2011).CrossRefGoogle Scholar
Zoric, I., Larsson, E.M., Kasemo, B., Langhammer, C., Adv. Mater. 22, 4628 (2010).CrossRefGoogle Scholar
Liu, N., Tang, M.L., Hentschel, M., Giessen, H., Alivisatos, A.P., Nat. Mater. 10, 631 (2011).CrossRefGoogle Scholar
Tang, M.L., Liu, N., Dionne, J.A., Alivisatos, A.P., J. Am. Chem. Soc. 133, 13220 (2011).CrossRefGoogle Scholar
Ameen Poyli, M., Silkin, V.M., Chernov, I.P., Echenique, P.M., Diez Muino, R., Aizpurua, J., J. Phys. Chem. Lett. 3, 2556 (2012).CrossRefGoogle Scholar
Tittl, A., Kremers, C., Dorfmuller, J., Chigrin, D.N., Giessen, H., Opt. Mater. Express 2, 111 (2012); A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, H. Giessen, Nano Lett. 11, 4366 (2011).CrossRefGoogle Scholar
Shegai, T., Chen, S., Miljkovic, V.D, Zengin, G., Johansson, P., Kall, M.A., Nat. Commun. 2, 481 (2011).CrossRefGoogle Scholar
Mongstad, T., Platzer-Bjorkman, Ch., Maehlen, J.P., Mooij, L.P.A., Pivak, Y., Dam, B., Marstein, E.S., Hauback, B.C., Karazhanov, S.Zh., Sol. Energy Mater. Sol. Cells 95, 3596 (2011).CrossRefGoogle Scholar