Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T12:42:04.661Z Has data issue: false hasContentIssue false

Mesoscopically Periodic Photonic-Crystal Materials for Linear and Nonlinear Optics and Chemical Sensing

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Over the past decade, we have been working to develop intelligent photonic-crystal materials with unique properties, which will be useful in a number of technological areas. These photonic-crystal materials utilize mesoscopically periodic arrays of spherical particles as their active optical elements and are easily fabricated chemically by the use of crystalline-colloidal-array (CCA) self-assembly techniques.

Crystalline colloidal arrays are mesoscopically periodic fluid materials, which efficiently diffract light meeting the Bragg condition. These photonic-crystal materials consist of arrays of colloidal particles that self-assemble in solution into either face-centered-cubic (fcc) or body-centered-cubic (bcc) crystalline arrays (Figure 1), with lattice constants in the mesoscale size range (50-500 nm). Just as atomic crystals diffract x-rays that meet the Bragg condition, CCAs diffract ultraviolet, visible, and near-infrared light, depending on the lattice spacing; the diffraction phenomena resemble those of opals, which are close-packed arrays of monodisperse silica spheres.

The CCA however can be prepared as macroscopically ordered arrays of non-close-packed spheres. This self-assembly is the result of electrostatic repulsions between colloidal particles, each of which has numerous charged surface functional groups. We have concentrated on the development of CCAs that diffract light in the visible spectral region and generally utilize colloidal particles of ~100-nm diameter. These particles have thousands of surface charges, which result from the ionization of surface sulfonate groups. The nearest-neighbor distances are often >200 nm.

Type
From Dynamics to Devices: Directed Self-Assembly of Colloidal Materials
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. The physics of crystalline colloidal array ordering and phase transitions is quite extensive with a few hundred references over the last 30 years. The following recent publications are excellent reviews: (a) Thirumalai, D., J. Phys. Chem. 93 (1989) p. 5637CrossRefGoogle Scholar
(b) Walsh, A.M. and Coalson, R.D., J. Chem. Phys. 100 (1994) p. 1559CrossRefGoogle Scholar
(c) Asher, S.A., Patent, U.S. Nos. 4,627,689,4,632,517 (1986), and 5,452,123 (1995)Google Scholar
(d) Hiltner, P.A. and Krieger, I.M., J. Phys. Chem. 73 (1969) p. 2386CrossRefGoogle Scholar
(e) Clark, N.A., Hurd, A.J., and Ackerson, B.J., Nature 281 (1979) p. 57CrossRefGoogle Scholar
(f) Alexander, S., Chaikin, P.M., Grant, P., Morales, G.J., Pincus, P., and Hone, D., J. Chem. Phys. 80 (11) (1984) p. 5776CrossRefGoogle Scholar
(g) Monovoukas, Y. and Gast, A.P., J. Colloid I. Sci. 128 (2) (1989) p. 533CrossRefGoogle Scholar
(h) Krieger, I.M. and O'Neill, F.M., J. Am. Chem. Soc. 90 (1968) p. 3114CrossRefGoogle Scholar
(i) Luck, V.W., Klein, M., and Wesslau, H., Ber. Bunsenges. Phys. Chem. 67 (1963) p. 75CrossRefGoogle Scholar
(j) Hone, D., Alexander, S., Chaikin, P.M., and Pincus, P., J. Chem. Phys. 79 (1983) p. 1474.CrossRefGoogle Scholar
2.Carlson, R.J. and Asher, S.A., Appl. Spectrosc. 38 (1984) p. 297.CrossRefGoogle Scholar
3. (a) Flaugh, P.L., O'Donnell, S.E., and Asher, S.A., Appl. Spectrosc. p. 847Google Scholar
(b) Asher, S.A., Flaugh, P.L., and Washinger, G., Spectroscopy 1 (1986) p. 26.Google Scholar
4.Rundquist, P.A., Photinos, P., Jagannathan, S., and Asher, S.A., J. Chem. Phys. 91 (1989) p. 4932.CrossRefGoogle Scholar
5.Zahorchak, J.C., Kesavamoorthy, R., Coalson, R.D., and Asher, S.A., J. Chem. Phys. 96 (1982) p. 6874.Google Scholar
6.Sanders, J.V., Nature 204 (1964) p. 1151.CrossRefGoogle Scholar
7. (a) Rundquist, P.A., Jagannathan, S., Kesavamoorthy, R., Brnardic, C., Xu, S., and Asher, S.A., J. Chem. Phys. 94 (1981),p. 711.CrossRefGoogle Scholar
(b) Kesavamoorthy, R., Jagannathan, S., Rundquist, P.A., and Asher, S.A., J. Chem. Phys.. p. 5172Google Scholar
(c) Rundquist, P.A., Kesavamooorthy, R., Jagannathan, S., and Asher, S.A., J. Chem. Phys. 95 p. 1249CrossRefGoogle Scholar
(d) Rundquist, P.A., Kesavamooorthy, R., Jagannathan, S., and Asher, S.A., J. Chem. Phys. 95 p. 8546.CrossRefGoogle Scholar
8.Asher, S.A., Holtz, J., Liu, L., and Wu, Z., J. Am. Chem. Soc. 116 (1994) p. 4997.CrossRefGoogle Scholar
9. (a) Asher, S.A. and Jagannathan, S., U.S. Patent No. 5,281,370 (1994)Google Scholar
(b) Haacke, G., Panzer, H.P., Magliocco, L.G., and Asher, S.A., U.S. Patent No. 5,266,238 (1993).Google Scholar
10. (a) Sunkara, H.B., Jethmalani, J.M., and Ford, W.T., Chem. Mater. 6 (1994) p. 362CrossRefGoogle Scholar
(b) Sunkara, H.B., Jethmalani, J.M., and Ford, W.T., ACS Symp. Ser. 585 (1995) p. 181.CrossRefGoogle Scholar
11. (a) Asher, S.A., Chang, S-Y., Tse, A., Liu, L., Pan, G., Wu, Z., and Li, P., in Materials for Optical Limiting, edited by Crane, R., Lewis, K., Van Stryland, E., and Khoshnevisan, M. (Mater. Res. Soc. Symp. Proc. 374, Pittsburgh, 1995) p. 305Google Scholar
(b) Asher, S.A., Kesavamoorthy, R., Jagannathan, S., and Rundquist, P., in Proc. SPIE Nonlinear Optics III, vol. 1626 (Society of Photo-Instrumentation Engineers, 1992) p. 2381Google Scholar
(c) Asher, S.A., Chang, S-Y., Jagannathan, S., Kesavamoorthy, R., and Pan, G., U.S. Patent No. 5,452,123 (1995).Google Scholar
12. (a) Chang, S-Y., Liu, L., and Asher, S.A., in Better Ceramics Through Chemistry VI, edited by Cheetham, A.K., Brinker, C.J., Mecartney, M.L., and Sanchez, C. (Mater. Res. Soc. Symp. Proc. 346, Pittsburgh, 1994) p. 875Google Scholar
(b) Chang, S-Y., Liu, L., and Asher, S.A., J. Am. Chem. Soc. 116, (1994) p. 6739CrossRefGoogle Scholar
(c) Kesavamoorthy, R., Super, M.S., and Asher, S.A., J. Appl. Phys. 71 (1992) p. 1116.CrossRefGoogle Scholar
13.Spry, R.J. and Kosan, D.J., Appl. Spectrosc. 40 (1986) p. 782.CrossRefGoogle Scholar
14.Pan, G., Tse, A.S., Kesavomoorthy, R., and Asher, S.A., J. Am. Chem. Soc. 120 (1998) p. 6518.CrossRefGoogle Scholar
15.Pan, G., Kesavomoorthy, R., and Asher, S.A., Phys. Rev. Lett. 78 (1997) p. 3860.CrossRefGoogle Scholar
16.Pan, G., Kesavomoorthy, R., and Asher, S.A., J. Am. Chem. Soc. 120 (1998) p. 6525.CrossRefGoogle Scholar
17.Hirokawa, Y. and Tanaka, T., J. Chem. Phys. 81 (1984) p. 6379.CrossRefGoogle Scholar
18.Schild, H.G., Prog. Polym. Sci. 17 (1992) p. 163.CrossRefGoogle Scholar
19.Wu, X.S., Hoffman, A.S., and Yager, P., J. Polym. Sci. Polym. Chem. A30 (1992) p. 2121.CrossRefGoogle Scholar
20.Weissman, J., Sunkara, H.B., Tse, A.S., and Asher, S.A., Science 274 (1996) p. 959.CrossRefGoogle Scholar
21.Holtz, J.H. and Asher, S.A., Nature 389 (1997) p. 829.CrossRefGoogle Scholar
22.Holtz, J.H., Holtz, J.S.W., Munro, C.H., and Asher, S.A., Anal. Chem. 70 (1998) p. 780.CrossRefGoogle Scholar