Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T08:09:40.423Z Has data issue: false hasContentIssue false

Mechanics of organic-inorganic biointerfaces—Implications for strength and creep properties

Published online by Cambridge University Press:  01 April 2015

Tao Qu
Affiliation:
School of Aeronautics and Astronautics, Purdue University, USA; [email protected]
Devendra Verma
Affiliation:
School of Aeronautics and Astronautics, Purdue University, USA; [email protected]
Mehran Shahidi
Affiliation:
Boku–Vienna University of Natural Resources and Life Sciences, Austria; formerly of TU Wien-Vienna University of [email protected]
Bernhard Pichler
Affiliation:
Laboratory of Macroscopic Material Testing, TU Wien-Vienna University of Technology, Austria; [email protected]
Christian Hellmich
Affiliation:
Institute for Mechanics of Materials and Structures, TU Wien-Vienna University of Technology, Austria; [email protected]
Vikas Tomar
Affiliation:
Purdue University–West Lafayette, USA; [email protected]
Get access

Abstract

From the biological/chemical perspective, interface concepts related to the cell surface/synthetic biomaterial interface and the extracellular matrix/biomolecule interface have wide applications in medical and biological technologies. Interfaces also play a significant role in determining structural integrity and mechanical creep and strength properties of biomaterials. Structural arrangement of interfaces combined with interfacial interactions between organic and inorganic phases significantly affects the mechanical properties of biological materials, allowing for a unique combination of seemingly inconsistent properties, such as fracture strength and tensile strength being both high—as opposed to traditional engineering materials, which have high fracture strength linked to low tensile strength and vice versa. While there has been a tremendous amount of work focused on the effects of structural arrangements on biomaterial properties, both experimental and computational studies of the strength, deformation, and viscosity of the interface itself are limited to just a few systems. Even in such studies, the actual interface stress is rarely analyzed, and correlated to the overall material strength or creep properties. This article provides a focused overview of such studies in hard biological materials, followed by a new vision of how the results of interfacial molecular studies could be consistently linked to multiscale, micromechanics-based perceptions of hierarchical biological materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fratzl, P., Weinkamer, R., Prog. Mater. Sci. 52, 1263 (2007).Google Scholar
Meyers, M.A., Chen, P.Y., Lin, A.Y.M., Seki, Y., Prog. Mater. Sci. 53, 1 (2008).Google Scholar
Rho, J.Y., Kuhn-Spearing, L., Zioupos, P., Med. Eng. Phys. 20, 92 (1998).Google Scholar
Launey, M.E., Ritchie, R.O., Adv. Mater. 21, 2103 (2009).Google Scholar
Dubey, D.K., Tomar, V., Ann. Biomed. Eng. 38, 2040 (2010).CrossRefGoogle Scholar
Vaia, R.A., Giannelis, E.P., MRS Bull. 26, 394 (2001).CrossRefGoogle Scholar
Landis, W.J., Hodgens, K.J., Song, M.J., Arena, J.A., Kiyonaga, S., Marko, M., Owen, C., Mcewen, B.F., J. Struct. Biol. 117, 24 (1996).CrossRefGoogle Scholar
Landis, W.J., Hodgens, K.J., Arena, J., Song, M.J., McEwen, B.F., Microsc. Res. Tech. 33, 192 (1996).Google Scholar
Fratzl, P., Fratzlzelman, N., Klaushofer, K., Vogl, G., Koller, K., Calcif. Tissue Int. 48, 407 (1991).CrossRefGoogle Scholar
Weiner, S., Talmon, Y., Traub, W., Int. J. Biol. Macromol. 5, 325 (1983).Google Scholar
Al-Sawalmih, A., Li, C.H., Siegel, S., Fabritius, H., Yi, S.B., Raabe, D., Fratzl, P., Pris, O.. Adv. Funct. Mater. 18, 3307 (2008).Google Scholar
Morin, C., Hellmich, C., Ultrasonics 54, 1251 (2014).Google Scholar
Eberhardsteiner, L., Hellmich, C., Scheiner, S., Comput. Methods Biomech. Biomed. Eng. 17, 48 (2014).Google Scholar
Fritsch, A., Hellmich, C., Dormieux, L., J. Theor. Biol. 260, 230 (2009).Google Scholar
Fritsch, A., Hellmich, C., J. Theor. Biol. 244, 597 (2007).CrossRefGoogle Scholar
Nikolov, S., Raabe, D., Biophys. J. 94, 4220 (2008).Google Scholar
Shahidi, M., Pichler, B., Hellmich, C., Eur. J. Mech. A Solids 45, 41 (2014).CrossRefGoogle Scholar
Fritsch, A., Dormieux, L., Hellmich, C., Sanahuja, J., J. Mater. Sci. 42, 8824 (2007).Google Scholar
Qu, T., Tomar, V., Proceedings of the Society of Engineering Science 51st Annual Technical Meeting, Bajaj, A., Zavattieri, P., Koslowski, M., Siegmund, T., Eds. (Purdue University Libraries Scholarly Publishing Services, West Lafayette, IN, 13 October 2014).Google Scholar
Bhowmik, R., Katti, K.S., Katti, D.R., J. Mater. Sci. 42, 8795 (2007).Google Scholar
Ghosh, P., Katti, D.R., Katti, K.S., Biomacromolecules 8, 851 (2007).Google Scholar
Katti, D.R., Pradhan, S.M., Katti, K.S., J. Biomech. 43, 1723 (2010).CrossRefGoogle Scholar
Bhowmik, R., Katti, K.S., Katti, D.R., J. Eng. Mech. 135, 413 (2009).Google Scholar
Bhowmik, R., Katti, K.S., Katti, D.R., “Influence of Mineral-Polymer Interactions on Molecular Mechanics of Polymer in Composite Bone Biomaterials,” Mater. Res. Soc. Symp. Proc. 978, Devanathan, R., Caturla, M.J., Kubota, A., Chartier, A., Phillpot, S., Eds. (Materials Research Society, Warrendale, PA, 2007), p. 0978-GG0914–0905-FF0909–0905.Google Scholar
Dubey, D.K., Tomar, V., J. Eng. Mater. Technol. 135, 021015 (2013).Google Scholar
Dubey, D.K., Tomar, V., J. Mech. Phys. Solids 57, 1702 (2009).Google Scholar
Dubey, D.K., Tomar, V., Acta Biomater. 5, 2704 (2009).Google Scholar
Dubey, D.K., Tomar, V., J. Phys. Condens. Matter 21, 205103 (2009).Google Scholar
Dubey, D.K., Tomar, V., Mater. Sci. Eng. C 29, 2133 (2009).Google Scholar
Dubey, D.K., Tomar, V., Appl. Phys. Lett. 96, 023703 (2010).Google Scholar
Lees, S., Prostak, K.. Connect. Tissue Res. 18, 41 (1988).CrossRefGoogle Scholar
Lees, S., Int. J. Biol. Macromol. 6, 321 (1984).Google Scholar
Alexander, B., Daulton, T.L., Genin, G.M., Lipner, J., Pasteris, J.D., Wopenka, B., Thomopoulos, S., J. R. Soc. Interface. 9, 1774 (2012).Google Scholar
Hellmich, C., Ulm, F.-J., Biomech. Model Mechanobiol. 2, 21 (2003).Google Scholar
Sasaki, N., Odajima, S., J. Biomech. 29, 655 (1996).Google Scholar
Eppell, S.J., Smith, B.N., Kahn, H., Ballarini, R., J. R. Soc. Interface 3, 117 (2005).Google Scholar
Gupta, H.S., Wagermaier, W., Zickler, Z.A., Aroush, D.R.B., Funari, S.S., Roschger, P., Wagner, H.D., Fratzl, P.. Nano Lett. 5, 2108 (2005).Google Scholar
Hodge, A.J., Petruska, J.A., Aspects of Protein Structure: Proceedings of a Symposium, Ramachandran, G.N., Ed. (Academic Press, Massachusetts, 1963), pp. 289300.Google Scholar
Fantner, G.E., Hassenkam, T., Kindt, J.H., Weaver, J.C., Birkedal, H., Pechenik, L., Cutroni, J.A., Cidade, G.A.G., Stucky, G.D., Morse, D.E., Hansma, P.K., Nat. Mater. 4, 612 (2005).Google Scholar
Thurner, P.J., Erickson, B., Jungmann, R., Schriock, Z., Weaver, J.C., Fantner, G.E., Schitter, G., Morse, D.E., Hansma, P.K., Eng. Fract. Mech. 74, 1928 (2007).Google Scholar
Ji, B.H., Gao, H., J. Mech. Phys. Solids 52, 1963 (2004).Google Scholar
Ji, B.H., J. Biomech. 41, 259 (2008).Google Scholar
Posner, A.S., Beebe, R.A., Semin. Arthritis Rheum. 4, 267 (1975).Google Scholar
Simone, A.D., Vitaglaino, L., Berisio, R., Biochem. Biophys. Res. Commun. 372, 121 (2008).Google Scholar
Barthelat, F., Espinosa, H.D., Exp. Mech. 47, 311 (2007).Google Scholar
Zhang, D., Chippada, U., Jordan, K., Ann. Biomed. Eng. 35, 1216 (2007).CrossRefGoogle Scholar
Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K., J. Comput. Chem. 26, 1781 (2005).Google Scholar
Frankland, S., Harik, V., Surf. Sci. 525, L103 (2003).CrossRefGoogle Scholar
Qu, T., Verma, D., Tomar, V., “A Nanomechanics Based Investigation into Interface Thermomechanics of Collagen and Chitin Based Biomaterial,” in SEM 2015 Annual Conference and Exposition on Experimental and Applied Mechanics (Costa Mesa, CA, 2015).Google Scholar
Qu, T., Tomar, V., Mater. Sci. Eng. C 38C, 28 (2014).Google Scholar
Lelievre, F., Bernache-Assollant, D., Chartier, T., J. Mater. Sci. – Mater. Med. 7, 489 (1996).Google Scholar
Ichikawa, Y., Kawamura, K., Fujii, N., Nattavut, T., Int. J. Numer. Methods Eng. 54, 1717 (2002).Google Scholar
Knauss, W., Comprehensive Structural Integrity 2, 383 (2003).CrossRefGoogle Scholar
Yoon, Y.J., Yang, G., Cowin, S.C., Biomech. Model. Mechanobiol. 1, 83 (2002).Google Scholar
Iyo, T., Maki, Y., Sasaki, N., Nakata, M., J. Biomech. 37, 1433 (2004).Google Scholar
Salençon, J., Handbook of Continuum Mechanics: General Concepts-Thermoelasticity (Springer, New York, 2001).CrossRefGoogle Scholar
Almer, J., Stock, S., J. Struct. Biol. 157, 365 (2007).Google Scholar
Barnes, H.A., J. Non-Newtonian Fluid Mech. 70, 1 (1997).Google Scholar
Coussot, P., Phys. Rev. Lett. 74, 3971 (1995).Google Scholar
Wagner, N.J., Brady, J.F., Phys. Today 62, 27 (2009).Google Scholar
Knapp, D.M., Barocas, V.H., Moon, A.G., Yoo, K., Petzold, L.R., Tranquillo, R.T., J. Rheol. 41, 971 (1997).Google Scholar
Barocas, V.H., Moon, A.G., Tranquillo, R.T., J. Biomech. Eng. 117, 161 (1995).Google Scholar
Dealy, J.M., Wang, J., Melt Rheology and Its Applications in the Plastics Industry (Springer, New York, 2013).Google Scholar
Bylund, G., Pak, T., Dairy Processing Handbook (Tetra Pak Processing Systems AB, Lund, Sweden, 2003).Google Scholar
Franck, A., “Understanding Rheology of Thermoplastic Polymers” (TA Instruments, 2004); available athttp://www.tainstruments.com/pdf/literature/AAN013_V_1_U_Thermoplast.pdf.Google Scholar
Newman, S., Cloitre, M., Allain, C., Forgacs, G., Beysens, D., Biopolymers 41, 337 (1997).Google Scholar