Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T21:17:31.722Z Has data issue: false hasContentIssue false

Mechanical response of nanoporous metals: A story of size, surface stress, and severed struts

Published online by Cambridge University Press:  10 January 2018

Hai-Jun Jin
Affiliation:
Institute of Metal Research, Chinese Academy of Sciences, China; [email protected]
Jörg Weissmüller
Affiliation:
Institute of Materials Physics and Technology, Hamburg University of Technology; and Hybrid Materials Systems Group, Helmholtz-Zentrum Geesthacht, Germany; [email protected]
Diana Farkas
Affiliation:
Department of Materials Science and Engineering, Virginia Tech, USA; [email protected]
Get access

Abstract

Nanoporous metals made by dealloying are macroscopic network architectures that can contain ∼1015 nanoscale struts or ligaments per sample. Their mechanical performance is critical to their applications as functional or lightweight high-strength materials. Testing nanoporous metals at the macroscopic scale offers opportunities for unraveling the properties of nanoscale solids in general. The central questions in this area include whether the macroscopic strength and elastic modulus of nanoporous metals can be correlated with the properties of nanoscale ligaments by the classical Gibson–Ashby equations, whether the dealloying-made network structure differs from the conventional foam metals, how network connectivity influences mechanical response, and how ligament size and surface properties affect the elastic and plastic response of nanoscale solids and that of nanoporous metals, particularly the tension–compression asymmetry in strength. This article reviews the fundamental observations of the mechanical response of nanoporous metals with a focus on gold and the emerging understanding of the aforementioned issues.

Type
Dealloyed Nanoporous Materials with Interface-Controlled Behavior
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mameka, N., Wang, K., Markmann, J., Lilleodden, E.T., Weissmüller, J., Mater. Res. Lett. 4, 27 (2016).CrossRefGoogle Scholar
Gibson, L.J., Ashby, M.F., Cellular Solids: Structure and Properties, 2nd ed. (Cambridge University Press, Cambridge, UK, 1997).CrossRefGoogle Scholar
Jin, H.J., Kurmanaeva, L., Schmauch, J., Rosner, H., Ivanisenko, Y., Weissmüller, J., Acta Mater. 57, 2665 (2009).CrossRefGoogle Scholar
Mameka, N., Markmann, J., Jin, H.-J., Weissmüller, J., Acta Mater. 76, 272 (2014).CrossRefGoogle Scholar
Ngô, B.-N.D., Stukowski, A., Mameka, N., Markmann, J., Albe, K., Weissmüller, J., Acta Mater. 93, 144 (2015).CrossRefGoogle Scholar
Greer, J.R., Nix, W.D., Phys. Rev. B 73, 245410 (2006).CrossRefGoogle Scholar
Dou, R., Derby, B., J. Mater. Res. 25, 746 (2010).CrossRefGoogle Scholar
Dou, R., Derby, B., Philos. Mag. 91, 1070 (2011).CrossRefGoogle Scholar
Huber, N., Viswanath, R.N., Mameka, N., Markmann, J., Weissmueller, J., Acta Mater. 67, 252 (2014).CrossRefGoogle Scholar
Biener, J., Hodge, A.M., Hayes, J.R., Volkert, C.A., Zepeda-Ruiz, L.A., Hamza, A.V., Abraham, F.F., Nano Lett. 6, 2379 (2006).CrossRefGoogle Scholar
Hodge, A.M., Biener, J., Hayes, J.R., Bythrow, P.M., Volkert, C.A., Hamza, A.V., Acta Mater. 55, 1343 (2007).CrossRefGoogle Scholar
Volkert, C.A., Lilleodden, E.T., Philos. Mag. 86, 5567 (2006).CrossRefGoogle Scholar
Hodge, A.M., Hayes, J.R., Caro, J.A., Biener, J., Hamza, A.V., Adv. Eng. Mater. 8, 853 (2006).CrossRefGoogle Scholar
Hakamada, M., Mabuchi, M., Scr. Mater. 56, 1003 (2007).CrossRefGoogle Scholar
Buerckert, M., Briot, N.J., Balk, T.J., Philos. Mag. 97, 1157 (2017).CrossRefGoogle Scholar
Balk, T.J., Eberl, C., Sun, Y., Hemker, K.J., Gianola, D.S., JOM 61, 26 (2009).CrossRefGoogle Scholar
Farkas, D., Caro, A., Bringa, E., Crowson, D., Acta Mater. 61, 3249 (2013).CrossRefGoogle Scholar
Crowson, D.A., Farkas, D., Corcoran, S.G., Scr. Mater. 56, 919 (2007).CrossRefGoogle Scholar
Diao, J.K., Gall, K., Dunn, M.L., Zimmerman, J.A., Acta Mater. 54, 643 (2006).CrossRefGoogle Scholar
Crowson, D.A., Farkas, D., Corcoran, S.G., Scr. Mater. 61, 497 (2009).CrossRefGoogle Scholar
Gall, K., Diao, J.K., Dunn, M.L., Nano Lett. 4, 2431 (2004).CrossRefGoogle Scholar
Zhang, W., Wang, T., Chen, X., J. Appl. Phys. 103, 123527 (2008).CrossRefGoogle Scholar
Weinberger, C.R., Cai, W., J. Mater. Chem. 22, 3277 (2012).CrossRefGoogle Scholar
Badwe, N., Chen, X.Y., Sieradzki, K., Acta Mater. 129, 251 (2017).CrossRefGoogle Scholar
Lührs, L., Zandersons, B., Huber, N., Weissmüller, J., Nano Lett. 17, 6258 (2017).CrossRefGoogle Scholar
Gibson, L.J., Ashby, M.F., Proc. R. Soc. Lond. A 382, 43 (1982).CrossRefGoogle Scholar
Biener, J., Hodge, A.M., Hamza, A.V., Hsiung, L.M., Satcher, J.H., J. Appl. Phys. 97, 4 (2005).CrossRefGoogle Scholar
Weissmüller, J., Newman, R.C., Jin, H.J., Hodge, A.M., Kysar, J.W., MRS Bull. 34, 577 (2009).CrossRefGoogle Scholar
Briot, N.J., Balk, T.J., Philos. Mag. 95, 2955 (2015).CrossRefGoogle Scholar
Briot, N.J., Kennerknecht, T., Eberl, C., Balk, T.J., Philos. Mag. 94, 847 (2014).CrossRefGoogle Scholar
Hodge, A.M., Doucette, R.T., Biener, M.M., Biener, J., Cervantes, O., Hamza, A.V., J. Mater. Res. 24, 1600 (2009).CrossRefGoogle Scholar
Liu, L.Z., Ye, X.L., Jin, H.J., Acta Mater. 118, 77 (2016).CrossRefGoogle Scholar
Liu, L.Z., Jin, H.J., Appl. Phys. Lett. 110, 5 (2017).Google Scholar
Mathur, A., Erlebacher, J., Appl. Phys. Lett. 90, 061910 (2007).CrossRefGoogle Scholar
Weissmüller, J., Sieradzki, K., MRS Bull. 43 (1), 14 (2018).CrossRefGoogle Scholar
Jin, H.-J., Weissmüller, J., Science 332, 1179 (2011).CrossRefGoogle Scholar
Miyazawa, N., Ishimoto, J., Hakamada, M., Mabuchi, M., Appl. Phys. Lett. 109, 261905 (2016).CrossRefGoogle Scholar
Corcoran, S.G., Brankovic, S.R., Dimitrov, N., Sieradzki, K., “Nanoindentation of Atomically Modified Surfaces,” Mater. Res. Soc. Symp. Proc. 505, Thin-Films—Stresses and Mechanical Properties VII, Cammarata, R.C., Nastasi, M., Busso, E.P., Oliver, W.C., Eds. (Materials Research Society, Warrendale, PA, 1998), p. 77.CrossRefGoogle Scholar
Ye, X.-L., Jin, H.-J., Appl. Phys. Lett. 103, 201912 (2013).CrossRefGoogle Scholar
Sun, S.F., Chen, X.Y., Badwe, N., Sieradzki, K., Nat. Mater. 14, 894 (2015).CrossRefGoogle Scholar
Gurtin, M.E., Murdoch, A.I., Arch. Ration. Mech. Anal. 57, 291 (1975).CrossRefGoogle Scholar
Gurtin, M.E., Weissmüller, J., Larché, F., Philos. Mag. A 78, 1093 (1998).CrossRefGoogle Scholar
Weissmüller, J., Cahn, J.W., Acta Mater. 45, 1899 (1997).CrossRefGoogle Scholar
Weissmüller, J., Duan, H.L., Farkas, D., Acta Mater. 58, 1 (2010).CrossRefGoogle Scholar
Duan, H.L., Yi, X., Huang, Z.P., Wang, J., Mech. Mater. 39, 81 (2007).CrossRefGoogle Scholar
Elsner, B.A.M., Müller, S., Bargmann, S., Weissmüller, J., Acta Mater. 124, 468 (2017).CrossRefGoogle Scholar
Wu, B., Heidelberg, A., Boland, J.J., Nat. Mater. 4, 525 (2005).CrossRefGoogle Scholar
Ngô, B.N.D., Roschning, B., Albe, K., Weissmüller, J., Markmann, J., Scr. Mater. 130, 74 (2017).CrossRefGoogle Scholar
Liang, H., Upmanyu, M., Huang, H., Phys. Rev. B Condens. Matter 71, 241403 (2005).CrossRefGoogle Scholar
Chen, L.Y., Richter, G., Sullivan, J.P., Gianola, D.S., Phys. Rev. Lett. 109, 125503 (2012).CrossRefGoogle Scholar
Hu, K.X., Ziehmer, M., Wang, K., Lilleodden, E.T., Philos. Mag. 96, 3322 (2016).CrossRefGoogle Scholar
Mangipudi, K.R., Epler, E., Volkert, C.A., Acta Mater. 119, 115 (2016).CrossRefGoogle Scholar
Lilleodden, E.T., Voorhees, P., MRS Bull. 43 (1), 20 (2018).CrossRefGoogle Scholar
Rayleigh, Lord, Proc. London Math. Soc. s1, 4 (1878).Google Scholar
Erlebacher, J., Phys. Rev. Lett. 106, 225504 (2011).CrossRefGoogle Scholar
McCue, I., Karma, A., Erlebacher, J., MRS Bull. 43 (1), 27 (2018).CrossRefGoogle Scholar
Ye, X.L., Jin, H.J., Adv. Eng. Mater. 18, 1050 (2016).CrossRefGoogle Scholar
Ye, X.L., Lu, N., Li, X.J., Du, K., Tan, J., Jin, H.J., J. Electrochem. Soc. 161, C517 (2014).CrossRefGoogle Scholar
Dou, R., Derby, B., Scr. Mater. 59, 151 (2008).CrossRefGoogle Scholar
Pia, G., Brun, M., Aymerich, F., Delogu, F., J. Mater. Sci. 52, 1106 (2017).CrossRefGoogle Scholar
Roschning, B., Huber, N., J. Mech. Phys. Solids 92, 55 (2016).CrossRefGoogle Scholar
Liu, R., Antoniou, A., Acta Mater. 61, 2390 (2013).CrossRefGoogle Scholar
Pia, G., Delogu, F., Scr. Mater. 103, 26 (2015).CrossRefGoogle Scholar
Jiao, J., Huber, N., Comput. Mater. Sci. 127, 194 (2017).CrossRefGoogle Scholar
Sun, X.-Y., Xu, G.-K., Li, X., Feng, X.-Q., Gao, H., J. Appl. Phys. 113, 061018 (2013).Google Scholar
Wang, K., Hartig, C., Blankenburg, M., Mueller, M., Guenther, R., Weissmüller, J., Scr. Mater. 127, 151 (2017).CrossRefGoogle Scholar
Mameka, N., Markmann, J., Weissmüller, J., Nat. Commun. 8, 176 (2017).CrossRefGoogle Scholar
Udin, H., Schaler, A.J., Wulff, J., Trans. AIME 185, 186 (1949).Google Scholar
Buttner, F.H., Udin, H., Wulff, J., Trans. AIME 191, 1209 (1951).Google Scholar
Diao, J.K., Gall, K., Dunn, M.L., J. Mech. Phys. Solids 52, 1935 (2004).CrossRefGoogle Scholar
Kramer, D., Viswanath, R.N., Weissmüller, J., Nano Lett. 4, 793 (2004).CrossRefGoogle Scholar
Hyde, B., Espinosa, H.D., Farkas, D., JOM 57, 62 (2005).CrossRefGoogle Scholar
Juarez, T., Biener, J., Weissmüller, J., Hodge, A.M., Adv. Eng. Mater. (2017), doi:10.1002/adem.201700389.Google Scholar