Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T10:56:12.267Z Has data issue: false hasContentIssue false

Measurement of Thin Film Mechanical Properties Using Nanoindentation

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

One of the simplest ways to measure the mechanical properties of a thin film is to deform it on a very small scale. Because indentation testing with a sharp indenter is one convenient means to accomplish this, nanoindentation, or indentation testing at the nanometer scale, has become one of the most widely used techniques for measuring the mechanical properties of thin films. Other reasons for the popularity of nanoindentation stem from the ease with which a wide variety of mechanical properties can be measured without removing the film from its substrate and the ability to probe a surface at numerous points and spatially map its mechanical properties. The utility of the mapping capability is illustrated in Figure 1, which shows several small indentations made at selected points in a microelectronic device. The hardness and modulus of the device were determined at each point. In addition to microelectronics, nanoindentation has also proved useful in the study of optical coatings, hard coatings, and materials with surfaces modified by ion implantation and laser treatment.

Type
Mechanical Behavior of Thin Films
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Oliver, W.C., MRS Bulletin 11 (1986) p. 15.CrossRefGoogle Scholar
2.Nix, W.D., Metall. Trans. 20A (1989) p. 2217.CrossRefGoogle Scholar
3.Oliver, W.C. and McHargue, C.J., Thin Solid Films 161 (1988) p. 117.CrossRefGoogle Scholar
4.Fabes, B.D. and Oliver, W.C., in Thin Films: Stresses and Mechanical Properties II, edited by Doerner, M.F., Oliver, W.C., Pharr, G.M., and Brotzen, F.R. (Mater. Res. Soc. Symp. Proc. 188, Pittsburgh, PA, 1990) p. 127.Google Scholar
5.O'Hern, M.E., Oliver, W.C., McHargue, C.J., Rickerby, D.S., and Bull, S.J., in Thin Films: Stresses and Mechanical Properties II, edited by Doerner, M.F., Oliver, W.C., Pharr, G.M., and Brotzen, F.R. (Mater. Res. Soc. Symp. Proc. 188, Pittsburgh, PA, 1990) p. 139.Google Scholar
6.Burnett, P.J. and Rickerby, D.S., Thin Solid Films 148 (1987) p. 51.CrossRefGoogle Scholar
7.Nastasi, M., Hirvonen, J-P., Jervis, T.R., Pharr, G.M., and Oliver, W.C., J. Mater. Res. 3 (1988) p. 226.Google Scholar
8.Jervis, T.R., Hirvonen, J-P., Nastasi, M., Zocco, T.G., Martin, J.R., Pharr, G.M., and Oliver, W.C., New Materials Approaches to Tribology: Theory and Applications, edited by Pope, L.E., Fehrenbacher, L., and Winer, W.O. (Mater. Res. Soc. Symp. Proc. 140, Pittsburgh, PA, 1989) p. 189.Google Scholar
9.Khruschov, M.M. and Berkovich, E.S., Industrial Diamond Review 11 (1951) p. 42.Google Scholar
10.Weihs, T.P., Hong, S., Bravman, J.C., and Nix, W.D., J. Mater. Res. 3 (1988) p. 931.CrossRefGoogle Scholar
11.Hong, S., Weihs, T.P., Bravman, J.C., and Nix, W.D., J. Elec. Mater. 19 (1990) p. 903.CrossRefGoogle Scholar
12.Pethica, J.B., Hutchings, R., and Oliver, W.C., Philos. Mag. A 48 (1983) p. 593.CrossRefGoogle Scholar
13.Oliver, W.C., Hutchings, R., and Pethica, J.B., in Microindentation Techniques in Materials Science and Engineering (ASTM STP 889), edited by Blau, P.J. and Lawn, B.R. (American Society for Testing and Materials, Philadelphia, PA, 1986) p. 90.Google Scholar
14.Frohlich, F., Grau, P., and Grellmann, W., Phys. Status Solidi A 42 (1977) p. 79.CrossRefGoogle Scholar
15.Pethica, J.B., in Ion Implantation into Metals, edited by Ashworth, V., Grant, W., and Procter, R. (Pergamon Press, Exford, 1982) p. 147156.CrossRefGoogle Scholar
16.Oliver, W.C., McHargue, C.J., and Zinkle, S.J., Thin Solid Films 153 (1987) p. 185.CrossRefGoogle Scholar
17.Sata, T., Takamoto, K., and Yoshikawa, H., Bull. Jpn. Soc. Prec. Engg. 13 (1969) p. 3.Google Scholar
18.Newey, D., Wilkens, M.A., and Pollock, H.M., J. Phys. E 15 (1982) p. 119.Google Scholar
19.Stone, D., LaFontaine, W.R., Alexopolous, P., Wu, T-W., and Li, Che-Yu, J. Mater. Res. 3 (1988) p. 141.CrossRefGoogle Scholar
20.Gane, N. and Cox, J.M., Philos. Mag. 22 (1970) p. 881.CrossRefGoogle Scholar
21.Standard Test for Microhardness of Materials”, ASTM Standard Test Method E-384, Annual Book of Standards 3.01 (American Society for Testing and Materials, Philadelphia, PA, 1989) p. 469.Google Scholar
22.Doerner, M.F., Gardner, D.S., and Nix, W.D., J. Mater. Res. 1 (1987) p. 845.CrossRefGoogle Scholar
23.Pollock, H.M., Maugis, D., and Barquins, M., in Microindentation Techniques in Materials Science and Engineering (ASTM STP 889), edited by Blau, P.J. and Lawn, B.R. (American Society for Testing and Materials, Philadelphia, PA, 1986) p. 47.Google Scholar
24.Lebouvier, D., Gilormini, P., and Felder, E., J. Phys. D 18 (1985) p. 199.Google Scholar
25.Loubet, J.L., Georges, J.M., Marchesini, O., and Meille, G., J. Tribology 106 (1984) p. 43.CrossRefGoogle Scholar
26.Doerner, M.F. and Nix, W.D., J. Mater. Res. 1 (1986) p. 601.CrossRefGoogle Scholar
27.Oliver, W.C. and Pharr, G.M., J. Mater. Res., 7 (1992) p. 1564.CrossRefGoogle Scholar
28.Shorshorov, M.K., Bulychev, S.I., and Alekhin, V.P., Sov. Phys. Dokl. 26 (1982) p. 769.Google Scholar
29.Bulychev, S.I., Alekhin, V.P., Shorshorov, M.K., Ternovskii, A.P., and Shnyrev, G.D., Zavod. Lab. 41 (1975) p. 1137.Google Scholar
30.Tabor, D., Proc. R. Soc. London, Ser. A 192 (1948) p. 247.Google Scholar
31.Stillwell, N.A. and Tabor, D., Proc. Phys. Soc. London 78 (1961) p. 169.CrossRefGoogle Scholar
32.Sneddon, I.N., Int. J. Eng. Sci. 3 (1965) p. 47.CrossRefGoogle Scholar
33.Pharr, G.M., Oliver, W.C., and Brotzen, F.R., J. Mater. Res. 7 (1992).Google Scholar
34.Simmons, G. and Wang, H., Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook 2nd ed. (The M.I.T. Press, Cambridge, Massachusetts, 1971).Google Scholar
35.Pethica, J.B. and Oliver, W.C., Physica Scripta T19 (1987) p. 61.CrossRefGoogle Scholar
36.Pethica, J.B. and Oliver, W.C., in Thin Films: Stresses and Mechanical Properties, edited by Bravman, J.C., Nix, W.D., Barnett, D.M., and Smith, D.A. (Mater. Res. Soc. Symp. Proc. 130, Pittsburgh, PA, 1989) p. 13.Google Scholar
37.Oliver, W.C. and Pethica, J.B., U.S. Patent No. 4,848,141 (July 1989).Google Scholar
38.Weihs, T.P. and Pethica, J.B., Mater. Res. Soc. Symp. Proc, in press.Google Scholar
39.King, R.B., Int. J. Solids Structures 23 (1987) p. 1657.CrossRefGoogle Scholar
40.Stone, D.S., J. Elec. Packaging 41 (1990) p. 112.Google Scholar
41.Stone, D.S., Wu, T.W., Alexopoulos, P-S., and LaFontaine, W.R., in Thin Films: Stresses and Mechanical Properties, edited by Bravman, J.C., Nix, W.D., Barnett, D.M., and Smith, D.A. (Mater. Res. Soc. Symp. Proc. 130, Pittsburgh, PA, 1989) p. 105.Google Scholar
42.Bhattacharya, A.K. and Nix, W.D., Int. J. Solids Structures 24 (1988) p. 1287.CrossRefGoogle Scholar
43.Fabes, B.D., Oliver, W.C., McKee, R.A., and Walker, F.J., submitted.Google Scholar
44.Baker, S.P., Jankowski, A.F., Hong, S., and Nix, W.D., in Thin Films: Stresses and Mechanical Properties II, edited by Doerner, M.F., Oliver, W.C., Pharr, G.M., and Brotzen, F.R. (Mater. Res. Soc. Symp. Proc. 188, Pittsburgh, PA, 1990) p. 289.Google Scholar
45.Simes, T.R., Mellor, S.G., and Hills, D.A., J. Strain Analysis 19 (1984) p. 135.CrossRefGoogle Scholar
46.Vitovec, F.H., in Microindentation Techniques in Materials Science and Engineering (ASTM STP 889), edited by Blau, P.J. and Lawn, B.R. (American Society for Testing and Materials, Philadelphia, PA, 1986) p. 175.Google Scholar
47.LaFontaine, W.R., Yost, B., and Li, Che-Yu, J. Mater. Res. 5 (1990) p. 776.CrossRefGoogle Scholar
48.LaFontaine, W.R., Paszkiet, C.A., Kohronen, M.A., and Li, Che-Yu, J. Mater. Res. 6 (1991) p. 2084.CrossRefGoogle Scholar
49.Mayo, M.J. and Nix, W.D., in Proceedings of the 8th International Conference on the Strength of Metals and Alloys, edited by Kettunen, P.O., Lepisto, T.K., and Lehtonen, M.E. (Pergamon Press, New York, 1988) p. 1415.Google Scholar
50.Mayo, M.J. and Nix, W.D., Acta Metall. 36 (1988) p. 2183.CrossRefGoogle Scholar
51.Mayo, M.J., Siegel, R.W., Narayanasamy, A., and Nix, W.D., J. Mater. Res. 5 (1990) p. 1073.CrossRefGoogle Scholar
52.Raman, V. and Berriche, R., in Thin Films: Stresses and Mechanical Properties II, edited by Doerner, M.F., Oliver, W.C., Pharr, G.M., and Brotzen, F.R. (Mater. Res. Soc. Symp. Proc. 188, Pittsburgh, PA, 1990) p. 171.Google Scholar
53.Lucas, B.N. and Oliver, W.C., Mater. Res. Soc. Symp. Proc, in press.Google Scholar
54.LaFontaine, W.R., Yost, B., Black, R.D., and Li, Che-Yu, J. Mater. Res. 5 (1990) p. 2100.CrossRefGoogle Scholar
55.LaFontaine, W.R., Yost, B., Black, R.D., and Li, Che-Yu, in Thin Films: Stresses and Mechanical Properties II, edited by Doerner, M.F., Oliver, W.C., Pharr, G.M., and Brotzen, F.R. (Mater. Res. Soc. Symp. Proc. 188, Pittsburgh, PA, 1990) p. 165.Google Scholar
56.Stone, D., LaFontaine, W., Ruoff, S., Hannula, S-P., Yost, B., and Li, Che-Yu, in Electronic Packaging Materials Science II, edited by Jackson, K.A., Pohanka, R.C., Uhlmann, D.R., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 72, Pittsburgh, PA, 1986) p. 171.Google Scholar
57.Wu, T.W., J. Mater. Res. 6 (1991) p. 407.CrossRefGoogle Scholar
58.Wu, T.W., Shull, A.L., and Lin, J., in Thin Films: Stresses and Mechanical Properties II, edited by Doerner, M.F., Oliver, W.C., Pharr, G.M., and Brotzen, F.R. (Mater. Res. Soc. Symp. Proc. 188, Pittsburgh, PA, 1990) p. 207.Google Scholar
59.Venkataraman, S., Kohlstedt, D.L., and Gerberich, W.W., Mater. Res. Soc. Symp. Proc., in press.Google Scholar
60.Swain, M.V., Mater. Res. Soc. Symp. Proc., in press.Google Scholar