Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-04T03:31:57.911Z Has data issue: false hasContentIssue false

Materials Science of the Cell

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Living cells are formidably complex systems that perform highly coordinated tasks which relate multiple biochemical and biophysical inputs to cell activities. Cell tasks may include not only adhesion and spreading, receptor-ligand mediated signal transduction, division, growth and programmed death, but also cell-type-dependent functions such as the environmental barrier provided by skin cells. These various cellular activities, often performed simultaneously or in a hierarchical order, involve hundreds of membrane, cytoplasmic, and extracellular proteins, ions, and small molecules, which interact with one another by means of regulated forces.

For instance, cell migration requires the coordination of membrane extension and retraction, cytoskeletal gelation-contraction-dissolution, the formation of focal adhesions at the front of the cell, and detachment of these adhesions at the rear of the cell. These processes involve not only cytoskeletal polymers and motor proteins (which provide the cell with the necessary motor forces and passive mechanical resistance to sustain both cell movement and cell integrity), but also specific membrane proteins (“cell receptors”) to promote intimate contact between the cell and its extracellular milieu. Nevertheless, despite the critical function of cell migration in wound healing, immune response, cancer metastasis, and embryogenesis, the fundamental mechanisms of this phenomenon are not well understood.

One of the steps limiting our understanding of cellular activities such as cell migration has been the lack of fundamental theory, backed by experimental methods, to monitor and characterize cellular processes quantitatively, noninvasively, and in real time.

Type
Materials Science of the Cell
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Palecek, S.P., Loftus, J.C., Ginsberg, M.H., Lauffenburger, D.A., and Horwitz, A.F., Nature 385 (1997) p. 537.CrossRefGoogle Scholar
2.Michalet, X., Ekong, R., Fougerousse, F., Rousseaux, S., Schurra, C., Hornigold, N., Slegtenhorst, M. von, Wolfe, J., Povey, S., Beckmann, J.S., and Bensimon, A., Science 277 (1997) p. 1518.CrossRefGoogle Scholar
3.Bockelmann, U., Roulet, B. Essavaz, and Heslot, F., Phys. Rev. Let. 79 (1997) p. 4489.CrossRefGoogle Scholar
4.Tskhovrebova, L., Trinick, J., Sleep, J.A., and Simmons, R.M., Nature 387 (1997) p. 308.CrossRefGoogle Scholar
5.Oberhauser, A.F., Marszalek, P.E., Erickson, H.P., and Fernandez, J.M., Nature 393 (1998) p. 181.CrossRefGoogle Scholar
6.Kas, J., Strey, H., and Sackmann, E., Nature 368 (1994) p. 226.CrossRefGoogle Scholar
7.Leduc, P., Haber, C., Bao, G., and Wirtz, D., Nature 399 (1999) p. 564.CrossRefGoogle Scholar
8.Evans, E., Bowman, H., Leung, A., Needham, D., and Tirrell, D., Science 273 (1996) p. 933.CrossRefGoogle Scholar
9.Petka, W.A., Harden, J., McGrath, K.P., Wirtz, D., and Tirrell, D.A., Science 281 (1998) p. 389.CrossRefGoogle Scholar
10.Thoumine, O. and Ott, A., J. Cell Sci. 110 (1997) p. 2109.CrossRefGoogle Scholar
11.Mason, T.G., Ganesan, K., Zanten, J.V. van, Wirtz, D., and Kuo, S.C., Phys. Rev. Lett. 79 (1997) p. 3282.CrossRefGoogle Scholar
12.Gittes, F., Schnurr, B., Olmsted, P.D., MacKintosh, F.C., and Schmidt, C.F., Phys. Rev. Lett. 79 (1997) p. 3286.CrossRefGoogle Scholar
13.Dal, J.W. and Sheetz, M.P., Cell 83 (1995) p. 693.CrossRefGoogle Scholar
14.Smith, S.B., Finzi, L., and Bustamante, C., Science 258 (1992) p. 1122.CrossRefGoogle Scholar
15.Perkins, T.T., Quake, S.R., Douglas, D.E., and Chu, S., Science 264 (1994) p. 822.CrossRefGoogle Scholar
16.Wirtz, D., Phys. Rev. Lett. 74 (1995) p. 2348.Google Scholar
17.Merkel, R., Nassoy, P., Leung, A., Ritchie, K., and Evans, E., Nature 397 (1999) p. 50.CrossRefGoogle Scholar
18.Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M., and Gaub, H.E., Science 276 (1997) p. 1109.CrossRefGoogle Scholar
19.Kellermayer, M.S.Z., Smith, S.B., Granzier, H.L., and Bustamante, C., Science 276 (1997) p. 1112.CrossRefGoogle Scholar
20.Wang, N., Butler, J.P., and Ingber, D.E., Science 260 (1993) p.1124.CrossRefGoogle Scholar