Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T10:23:25.219Z Has data issue: false hasContentIssue false

Materials Issues and Characterization of Low-k Dielectric Materials

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Continuing improvement in device density and performance has significantly affected the dimensions and complexity of the wiring structure for on-chip interconnects. These enhancements have led to a reduction in the wiring pitch and an increase in the number of wiring levels to fulfill demands for density and performance improvements. As device dimensions shrink to less than 0.25 μm, the propagation delay, crosstalk noise, and power dissipation due to resistance-capacitance (RC) coupling become significant. Accordingly the interconnect delay now constitutes a major fraction of the total delay limiting the overall chip performance. Equally important is the processing complexity due to an increase in the number of wiring levels. This inevitably drives cost up by lowering the manufacturing yield due to an increase in defects and processing complexity.

To address these problems, new materials for use as metal lines and interlayer dielectrics (ILDs) and alternative architectures have surfaced to replace the current Al(Cu)/SiO2 interconnect technology. These alternative architectures will require the introduction of low-dielectric-constant k materials as the interlayer dielectrics and/or low-resistivity conductors such as copper. The electrical and thermomechanical properties of SiO2 are ideal for ILD applications, and a change to material with different properties has important process-integration implications. To facilitate the choice of an alternative ILD, it is necessary to establish general criterion for evaluating thin-film properties of candidate low-k materials, which can be later correlated with process-integration problems.

Type
Low-Dielectric-Constant Materials
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bohr, M.T., Int. Electron Devices Meeting Tech. Digest (1995) p. 241.CrossRefGoogle Scholar
2. Edelstein, D.C., Sai-Halasz, G.A., and Mii, Y-J., IBM J. Res. Dev. 39 (4) (1995) p. 383.Google Scholar
3. Wilson, S.R. and Tracy, C.J., eds., Handbook of Multilevel Metallization for Integrated Circuits (Noyes Publications, Park Ridge, NJ, 1993).Google Scholar
4. Paraszczak, J., Edelstein, D., Cohen, S., Babich, E., and Hummel, J., Int. Electron. Devices Meeting Tech. Digest (1993) p. 261.Google Scholar
5. Harper, J.M.E., Colgan, E.G., Hu, C-K., Hummel, J.P., Buchwalter, L.P., and Uzoh, C.E., MRS Bulletin XIX (8) (1994) p. 23.Google Scholar
6. Murarka, S., Solid State Technol. 39 (3) (1996) p. 83.Google Scholar
7. Hedrick, J.L., Labadie, J.W., Russell, T.P., Hofer, D.C., and Wakharkar, V., Polymer 34 (1993) p. 4717.Google Scholar
8. Moore, J.A., Lang, C-I., Lu, T-M., and Yang, G-R., Vapor-Depositable Polymers with Low Dielectric Constants (American Chemical Society, Washington, DC, 1995) p. 4717.Google Scholar
9. Fox, R. and Pellerin, J. P. (private communication).Google Scholar
10. Hummel, J.P., in DuPont Symp. Polyimides in Microelectronics, edited by Schuckert, C.S. (DuPont, Wilmington, DE, 1995) p. 547.Google Scholar
11. Ho, P.S., Poon, T.W., and Leu, J., J. Phys. Chem. Solids 55 (10) (1994) p. 1115.Google Scholar
12. Leu, J., Kang, Y-S., Liou, H.C., and Ho, P.S., in Electronic Packaging Materials Science VII, edited by Borgesen, P., Jensen, K.F., and Pollak, R.A. (Mater. Res. Soc. Symp Proc. 333, Pittsburgh, 1994) p. 283.Google Scholar
13. Poon, T.W., Leu, J., Kang, Y-S., Liou, H.C., and Ho, P.S., Electronic Packaging Materials Science VII (1994) p. 333.Google Scholar
14. Ree, M., Chen, K-J., and Kirby, D.P., J. Appl. Phys. 72 (5) (1992) p. 2014.Google Scholar
15. Ree, M., Kim, K., Woo, S.H., and Chang, H., J. Appl. Phys. 81 (2) (1997) p. 698.CrossRefGoogle Scholar
16. Saraf, R.F., Tong, H-M., Poon, T.W., Silverman, B.D., Ho, P.S., and Rossi, A.R., J. Appl. Polym. Sci. 46 (1992) p. 1329.Google Scholar
17. Frank, C.W., Rao, V., Despotopoulou, M.M., Pease, R.F.W., Hinsberg, W.D., Miller, R.D., and Rabolt, J.F., Science 273 (1996) p. 912.CrossRefGoogle Scholar
18. Chen, S.T., Yang, C.H., Faupel, F., and Ho, P.S., J. Appl. Phys. 64 (1988) p. 6690.CrossRefGoogle Scholar
19. Hougham, G., Tesoro, G., and Shaw, J., Macromolecules 27 (1994) p. 3642.Google Scholar
20. Tong, H.M. and Saenger, K.L., in New Characterization Techniques for Thin Polymer Films (John Wiley & Sons, New York, 1990) p. 29.Google Scholar
21. Lu, C. and Czandernal, A.W., eds., Applications of Piezoelectric Quartz Crystal Microbalances (Elsevier, Amsterdam, 1984).Google Scholar
22. Hougham, G., Tesoro, G., Viehbeck, A., and Chapple-Sokol, J.D., Macromolecules 27 (1994) p. 5964.Google Scholar
23. Deutsch, M.S.A., Ree, M-H., Surovic, C.W., Arjavalingam, G., Prasad, K., McHerron, D.C., McAllister, M., Kopcsay, G.V., Giri, A.P., Perfecto, E. and White, G.E., IEEE Trans. Components, Packaging, Manufacturing Technol. B 17 (4) (1994) p. 486.CrossRefGoogle Scholar
24. Krevelen, D.W.V., Properties of Polymers (Elsevier, New York, 1990).Google Scholar
25. Seymour, R.B. and Carraher, C.E., Structure-Property Relationships in Polymers (Plenum Press, New York, 1984).Google Scholar
26. Baeriswyl, D., Harbeke, G., Kiess, H., and Meyer, W., in Electronic Properties of Polymers (John Wiley & Sons, New York, 1982).Google Scholar
27. Lee, S. and Park, J-W., J. Appl. Phys. 80 (9) (1996) p. 5260.CrossRefGoogle Scholar
28. Weast, R.C., ed., CRC Handbook of Chemistry and Physics (CRC Press, Inc., Boca Raton, FL, 1985).Google Scholar
29. Lin, L. and Bidstrup, S.A., J. Appl. Polym. Sci. 54 (1994) p. 553.Google Scholar
30. McKerrow, A.J., Leu, J., Ho, H-M., Auman, B.C., and Ho, P.S., in Advanced Metallization and Interconnect Systems for ULSI Applications in 1996, edited by Havemann, Robert, Schmitz, John, Komiyama, Hiroshi, and Tsubouchi, Kazuo (Materials Research Society, 1996).Google Scholar
31. Cassidy, P.E., Thermally Stable Polymers (Marcel Dekker, Inc., New York, 1980).Google Scholar
32. Joesten, B.L., J. Appl. Polym. Sci. 18 (1974) p. 439.Google Scholar
33. Kasthurirangan, J., Liao, C.N., Leu, J.. and Ho, P.S. (private communication).Google Scholar
34. Poon, T.W., Silverman, B.D., Saraf, R., Rossi, A., and Ho, P.S., Phys. Rev. 46 (18) (1992) p. 456.Google Scholar
35. Moylan, C.R., Best, M.E., and Ree, M., Polym. Phys. Ed. B29 (1991) p. 87.Google Scholar