Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-02T19:40:44.678Z Has data issue: false hasContentIssue false

Materials for x-ray refractive lenses minimizing wavefront distortions

Published online by Cambridge University Press:  09 June 2017

Thomas Roth
Affiliation:
European Synchrotron Radiation Facility, France; and European X-Ray Free Electron Laser GmbH, Germany; [email protected]
Lucia Alianelli
Affiliation:
Diamond Light Source, UK; [email protected]
Daniel Lengeler
Affiliation:
RXOPTICS, Germany; [email protected]
Anatoly Snigirev
Affiliation:
X-ray Optics Laboratory, Baltic Federal University, Russia; [email protected]
Frank Seiboth
Affiliation:
Deutsches Elektronen-Synchrotron, Germany; and SLAC National Accelerator Laboratory, USA; [email protected]
Get access

Abstract

Refraction through curved surfaces, reflection from curved mirrors in grazing incidence, and diffraction from Fresnel zone plates are key hard x-ray focusing mechanisms. In this article, we present materials used for refractive x-ray lenses. Important properties of such x-ray lenses include focusing strength, shape, and the material’s homogeneity and absorption coefficient. Both the properties of the initial material and the fabrication process result in a lens with imperfections, which can lead to unwanted wavefront distortions. Different fabrication methods for one-dimensional and two-dimensional focusing lenses are presented, together with the respective benefits and inconveniences that are mostly due to shape fidelity. Different materials and material grades have been investigated in terms of their homogeneity and the absence of inclusions. Single-crystalline materials show high homogeneity, but suffer from unwanted diffracted radiation, which can be avoided using amorphous materials. Finally, we show that shape imperfections can be corrected using a correction lens.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ice, G.E., Budai, J.D., Pang, J.W.L., Science 334, 1234 (2011).Google Scholar
Tomie, T., “X-ray Lens,” Japanese Patent 6045288 (1994).Google Scholar
Snigirev, A., Kohn, V., Snigireva, I., Lengeler, B., Nature 384, 49 (1996).Google Scholar
Wilhelm, F., Garbarino, G., Jacobs, J., Vitoux, H., Steinmann, R., Guillou, F., Snigirev, A., Snigireva, I., Voisin, P., Braithwaite, D., Aoki, D., Brison, J.-P., Kantor, I., Lyatun, I., Rogalev, A., High Press. Res. 36, 445 (2016).Google Scholar
Serebrennikov, D., Clementyev, E., Semenov, A., Snigirev, A., J. Synchrotron Radiat. 23, 1315 (2016).Google Scholar
Vaughan, G.B.M., Wright, J.P., Bytchkov, A., Rossat, M., Gleyzolle, H., Snigireva, I., Snigirev, A., J. Synchrotron Radiat. 18, 125 (2011).Google Scholar
Aristov, V.V., Grigoriev, M.V., Kuznetsov, S.M., Shabelnikov, L.G., Yunkin, V.A., Hoffmann, M., Voges, E., Opt. Commun. 177, 33 (2000).Google Scholar
Schroer, C.G., Kurapova, O., Patommel, J., Boye, P., Feldkamp, J., Lengeler, B., Burghammer, M., Riekel, C., Vincze, L., van der Hart, A., Küchler, M., Appl. Phys. Lett. 87, 124103 (2005).Google Scholar
Schroer, C.G., Lengeler, B., Phys. Rev. Lett. 94, 054802 (2005).Google Scholar
Sanchez del Rio, M., Alianelli, L., J. Synchrotron Radiat. 19, 366 (2012).Google Scholar
Evans-Lutterodt, K., Ablett, J.M., Stein, A., Kao, C.-C., Tennant, D.M., Klemens, F., Taylor, A., Jacobsen, C., Gammel, P.L., Huggins, H., Ustin, S., Bogart, G., Ocola, L., Opt. Express 11, 919 (2003).Google Scholar
Alianelli, L., Sawhney, K.J.S., Barrett, R., Pape, I., Malik, A., Wilson, M.C., Opt. Express 19, 11120 (2011).Google Scholar
Seiboth, F., Schropp, A., Scholz, M., Wittwer, F., Rödel, C., Wünsche, M., Ullsperger, T., Nolte, S., Rahomäki, J., Parfeniukas, K., Giakoumidis, S., Vogt, U., Wagner, U., Rau, C., Boesenberg, U., Garrevoet, J., Falkenberg, G., Galtier, E.C., Lee, H.J., Nagler, B., Schroer, C.G., Nat. Commun. 8, 14623 (2017).CrossRefGoogle Scholar
Goto, S., Yabashi, M., Tamasaku, K., Ishikawa, T., AIP Conf. Proc. 879, 1057 (2007).Google Scholar
Lengeler, B., Schroer, C., Tümmler, J., Benner, B., Richwin, M., Snigirev, A., Snigireva, I., Drakopoulos, M., J. Synchrotron Radiat. 6, 1153 (1999).Google Scholar
Tümmler, J., “Development of Compound Refractive Lenses for Hard X-rays,” PhD thesis, RWTH Aachen, Germany (2000).Google Scholar
Dombrowski, D.E., Fusion Eng. Des. 37, 229 (1997).Google Scholar
Roth, T., Helfen, L., Hallmann, J., Samoylova, L., Kwaśniewski, P., Lengeler, B., Madsen, A., Proc. SPIE 9207, 920702 (2014).Google Scholar
Lyatun, I.I., Goikhman, A.Y., Ershov, P.A., Snigireva, I.I., Snigirev, A.A., J. Surf. Invest. X-ray Synchrotron Neutron Tech. 9, 446 (2015).Google Scholar
Andrejcuk, A., Sakurai, Y., Itou, M., AIP Conf. Proc. 879, 994 (2007).Google Scholar
Nazmov, V., Reznikova, E., Last, A., Mohr, J., Saile, V., Simon, R., DiMichiel, M., AIP Conf. Proc. 879, 770 (2007).Google Scholar
Walker, M.J., Proc. SPIE 4407, 89 (2001).Google Scholar
Evans-Lutterodt, K., Stein, A., Ablett, J.M., Bozovic, N., Taylor, A., Tennant, D.M., Phys. Rev. Lett. 99, 134801 (2007).Google Scholar
Isakovic, A.F., Stein, A., Warren, J.B., Narayanan, S., Sprung, M., Sandy, A.R., Evans-Lutterodt, K., J. Synchrotron Radiat. 16, 8 (2009).Google Scholar
Fox, O.J.L., Alianelli, L., Malik, A.M., Pape, I., May, P.W., Sawhney, K.J.S., Opt. Express 22, 7657 (2014).Google Scholar
Seiboth, F., Scholz, M., Patommel, J., Hoppe, R., Wittwer, F., Reinhardt, J., Seidel, J., Knaut, M., Jahn, A., Richter, K., Bartha, J., Falkenberg, G., Schroer, C.G., Appl. Phys. Lett. 105, 131110 (2014).Google Scholar
Terentyev, S., Blank, V., Polyakov, S., Zholudev, S., Snigirev, A., Polikarpov, M., Kolodziej, T., Qian, J., Zhou, H., Shvyd’ko, Y., Appl. Phys. Lett. 107, 111108 (2015).Google Scholar
Antipov, S., Baryshev, S.V., Butler, J.E., Antipova, O., Liu, Z., Stoupin, S., J. Synchrotron Radiat. 23, 163 (2016).Google Scholar
Polikarpov, M., Snigireva, I., Snigirev, A., AIP Conf. Proc. 1741, 040024 (2016).Google Scholar
Terentyev, S., Polikarpov, M., Snigireva, I., Di Michiel, M., Zholudev, S., Yunkin, V., Kuznetsov, S., Blank, V., Snigirev, A., J. Synchrotron Radiat. 24, 103 (2017).Google Scholar
Polikarpov, M., Snigireva, I., Morse, J., Yunkin, V., Kuznetsov, S., Snigirev, A., J. Synchrotron Radiat. 22, 23 (2015).CrossRefGoogle Scholar
Kononenko, T.V., Ralchenko, V.G., Ashkinazi, E.E., Polikarpov, M., Ershov, P., Kuznetsov, S., Yunkin, V., Snigireva, I., Konov, V.I., Appl. Phys. A 122, 152 (2016).Google Scholar
Seiboth, F., Kahnt, M., Scholz, M., Seyrich, M., Wittwer, F., Garrevoet, J., Falkenberg, G., Schropp, A., Schroer, C.G., Proc. SPIE 9963, 99630P (2016).Google Scholar
Vaezi, M., Seitz, H., Yang, S., Int. J. Adv. Manuf. Technol. 67, 1721 (2013).Google Scholar
Supplementary material: PDF

Roth supplementary material

Roth supplementary material 1

Download Roth supplementary material(PDF)
PDF 101.1 KB
Supplementary material: PDF

Roth supplementary material

Table 1

Download Roth supplementary material(PDF)
PDF 72.3 KB