Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T08:03:06.308Z Has data issue: false hasContentIssue false

Materials Challenges for Advanced Nuclear Energy Systems

Published online by Cambridge University Press:  30 May 2017

Get access

Abstract

Nuclear energy holds the promise to provide vast amounts of reliable baseline electricity at commercially competitive costs with modest environmental impact. However, the future of nuclear energy lies beyond the current generation of light water reactors. Future reactors will be expected to provide additional improvements in safety, maintain high reliability, use uranium resources more efficiently, and produce lower volumes of less toxic solid wastes. Several advanced reactor concepts are under development to meet these demands. In most cases, these designs translate into higher operating temperatures and longer lifetimes, more corrosive environments, and higher radiation fields in which materials must reliably perform. This issue focuses on the materials challenges that will determine the feasibility of these advanced concepts and define the long-term future of nuclear power.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Butler, D., Nature 429 (20), 238 (2004).Google Scholar
2. Marcus, G.H., Prog. Nucl. Energy 50 (2), 92 (2008).CrossRefGoogle Scholar
3. Nuttall, W., Nuclear Renaissance: Technologies and Policies for the Future of Nuclear Power (Taylor & Francis, Oxford, UK, 2004).Google Scholar
4. Mansur, L.K., Rowcliffe, A.F., Nanstad, R.K., Zinkle, S.J., Corwin, W.R., Stoller, R.E., J. Nucl. Mater. 329–333, 166 (2004).Google Scholar
5. Allen, T.R., Busby, J.T., Klueh, R.L., Maloy, S.A., Toloczko, M.B., JOM 60, 15 (2008).CrossRefGoogle Scholar
6. Raj, B., Vijayalakshmi, M., Rao, P.R.V., Rao, K.B.S., MRS Bull. 33, 327 (2008).CrossRefGoogle Scholar
7. Odette, G.R., Alinger, M.J., Wirth, B.D., Annu. Rev. Mater. Res. 38, 471 (2008).CrossRefGoogle Scholar
8. Boutard, J.L., Alamo, A., Lindau, R., Rieth, M., C. R. Phys. 9, 287 (2008).Google Scholar
9. Zinkle, S.J., Ghoniem, N.M., Fusion Eng. Des. 51–52, 55 (2000).Google Scholar
10. Ehrlich, K., Konys, J., Heikinheimo, L., J. Nucl. Mater. 327, 140 (2004).CrossRefGoogle Scholar
11. Carré, F., Renault, C., Anzieu, P., Brossard, Ph., Yvon, P.. Outlook to France’s R&D Strategy on Future Nuclear Systems. Research Reactor Fuel Management Conference (RRFM 2007), Lyon, France (March 2007).Google Scholar
12. A Technology Roadmap for Generation IV Nuclear Energy Systems, U.S. DOE Nuclear Energy Advisory Committee and the Generation IV International Forum, GIF-002-00, December 2002, http://gif.inel.gov/roadmap/.Google Scholar
13. Odette, G.R., Wirth, B.D., Bacon, D.J., Ghoniem, N.M., MRS Bull. 26, 176 (2001).CrossRefGoogle Scholar
14. Was, G.S., Fundamentals of Radiation Materials Science (Springer, New York, 2007).Google Scholar
15. Weber, W.J., Ewing, R.C., Angell, C.A., Arnold, G.W., Cormack, A.N., Delaye, J.M., Griscom, D.L., Hobbs, L.W., Navrotsky, A., Price, D.L., Stoneham, A.M., Weinberg, M.C., J. Mater. Res. 12, 1946 (1997).CrossRefGoogle Scholar
16. Weber, W.J., Ewing, R.C., Catlow, C.R.A., Diaz de la Rubia, T., Hobbs, L.W., Kinoshita, C., Matzke, Hj., Motta, A.T., Nastasi, M.A., Salje, E.H.K., Vance, E.R., Zinkle, S.J., J. Mater. Res. 13, 1434 (1998).CrossRefGoogle Scholar
17. Ewing, R.C., MRS Bull. 33, 338 (2008).CrossRefGoogle Scholar