Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T11:09:07.674Z Has data issue: false hasContentIssue false

Materials Advances through Aberration-Corrected Electron Microscopy

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Over the last few years, the performance of electron microscopes has undergone a dramatic improvement, with achievable resolution having more than doubled. It is now possible to probe individual atomic sites in many materials and to determine atomic and electronic structure with single-atom sensitivity. This revolution has been enabled by the successful correction of the dominant aberrations present in electron lenses. In this review, the authors present a brief overview of these instrumental advances, emphasizing the new insights they provide to several areas of materials research.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Feynman, R.P. http://www.zyvex.com/nanotech/feynman.html (accessed December 2005).Google Scholar
2Rose, H.Ultramicroscopy 56 (1994) p. 11.CrossRefGoogle Scholar
3Nion Co. Home Page, http://www.nion. com/ (accessed December 2005).Google Scholar
4CEOS-Corrected Electron Optical Systems GmbH Home Page, http://www.ceos-gmbh.de/ (accessed December 2005).Google Scholar
5Zach, J. and Haider, M.Nucl. Inst. Meth. A363 (1995) p. 316.CrossRefGoogle Scholar
6Jia, C.L.Lentzen, M. and Urban, K.Science 299 (2003) p. 870.CrossRefGoogle Scholar
7Hutchison, J.L.Titchmarsh, J.M.Cockayne, D.J.H., Doole, R.C.Hetherington, C.J.D., Kirkland, A.I. and Sawada, H.Ultramicroscopy 103 (2005) p. 7.CrossRefGoogle Scholar
8Lentzen, M.Jahnen, B.Jia, C.L.Thust, A.Tillmann, K. and Urban, K.Ultramicroscopy 92 (2002) p. 233.CrossRefGoogle Scholar
9Kirkland, A.I. and Meyer, R.R.Microsc. Microanal. 10 (2004) p. 401.CrossRefGoogle Scholar
10Varela, M.Findlay, S.D.Lupini, A.R.Christen, H.M.Borisevich, A.Y.Dellby, N.Krivanek, O.L.Nellist, P.D.Oxley, M.P.Allen, L.J. and Pennycook, S.J.Phys. Rev. Lett. 92 095502 (2004).CrossRefGoogle Scholar
11Browning, N.D.Yuan, J., and Brown, L.M.Physica C 202 (1992) p. 12.CrossRefGoogle Scholar
12Browning, N.D.Chisholm, M.F.Pennycook, S.J.Norton, D.P. and Lowndes, D.H.Physica C 212 (1993) p. 185.CrossRefGoogle Scholar
13Varela, M.Lupini, A.R.Pena, V.Sefrioui, Z.Arslan, I.Browning, N.D.Santamaria, J. and Pennycook, S.J. “Direct measurement of charge transfer phenomena at ferromagnetic/superconducting oxide interfaces,” preprint, condmat/0508564 (accessed December 2005).Google Scholar
14Dagotto, E.Hotta, T. and Moreo, A.Phys. Rep. 344 (2001) p. 1.CrossRefGoogle Scholar
15Jin, S.Tiefel, T.H.McCormack, M.Fastnacht, R.A.Ramesh, R. and Chen, L.H.Science 264 (1994) p. 413.CrossRefGoogle Scholar
16Helmolt, R. Von, Wecker, J.Holzapfel, B.Schultz, L. and Samwer, K.Phys. Rev. Lett. 71 (1993) p. 2331.CrossRefGoogle Scholar
17Woo, H.Tyson, T.A.Croft, M.Cheong, S.W. and Woicik, J.C.Phys. Rev. B 63 134412 (2001).CrossRefGoogle Scholar
18Varela, M. et al. (2005) unpublished.Google Scholar
19Winkelman, G.B.Dwyer, C.Hudson, T.S.Nguyen-Manh, D., Doeblinger, M.Satet, R.L.Hoffmann, M.J. and D.Cockayne, J.H.Appl. Phys. Lett. 87 061911 (2005).CrossRefGoogle Scholar
20Shibata, N.Pennycook, S.J.Gosnell, T.R.Painter, G.S.Shelton, W.A. and Becher, P.F.Nature 428 (2004) p. 730.CrossRefGoogle Scholar
21Ziegler, A.Idrobo, J.C.Cinibulk, M.K.Kisielowski, C.Browning, N.D. and Ritchie, R.O.Science 306 (2004) p. 1768.CrossRefGoogle Scholar
22Gontard, L. Cervera, Chang, L-Y, Dunin-Borkowski, R.E., Kirkland, A.I.Hetherington, C.J.D. and Ozkaya, D.Inst. Phys. Conf. Ser. EMAG 05 (2005) in press.Google Scholar
23Kudera, S.Carbone, L.Casula, M.F.Cingolani, R.Falqui, A.Snoeck, E.Parak, W.J. and Manna, L.Nano Lett. 5 (2005) p. 445.CrossRefGoogle Scholar
24Tanaka, N.Yamasaki, J. and Kawai, T.Extended abstract of a paper presented at Microscopy and Microanalysis 2004 (Savannah, Georgia, August 1-5, 2004).Google Scholar
25Tanaka, N.Yamasaki, J.Usuda, K. and Ikarashi, N.J. Electron Microsc. 52 (2003) p. 69.CrossRefGoogle Scholar
26Yamasaki, J.Kawai, T. and Tanaka, N.J. Electron Microsc. 53 (2004) p. 129.CrossRefGoogle Scholar
27Tillmann, K.Thust, A. and Urban, K.Microsc. Microanal. 10 (Cambridge UP, 2004) p. 185.Google Scholar
28Pennycook, S.J.Lupini, A.R.Borisevich, A.Peng, Y. and Shibata, N.Microsc. Microanal. 10 (Suppl. 1.2) (2004) p. 1172.CrossRefGoogle Scholar
29Benthem, K. van, Lupini, A.R.Kim, M.Baik, H.S.Doh, S.Lee, J.-H., Oxley, M.P.Findlay, S.D.Allen, L.J. and Pennycook, S.J.Appl. Phys. Lett. 87 034104 (2005).CrossRefGoogle Scholar
30Rose, H.Nucl. Instrum. Methods Phys. Res. A 519 (2004) p. 12.CrossRefGoogle Scholar