Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T19:01:04.224Z Has data issue: false hasContentIssue false

Manufacturing Nanocomposite Parts: Present Status and Future Challenges

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The promises of nanotechnology are mostly based upon the ability to produce nanostructured materials with novel properties. Nanocomposites are defined here as a class of materials that contain at least one phase with constituents in the nanometer domain. This article describes the present state of knowledge of the fabrication of nanocomposite materials, with special emphasis on plasma forming of bulk parts. Future challenges facing the development of methods for consolidating nanocomposites with retained nanostructures are also highlighted.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1, Roy, Roy, R.A., and Roy, D.M., Mater. Lett. 4 (1986) p. 323.CrossRefGoogle Scholar
2Sekino, T., Nakajima, T., and Niihara, K., Mater. Lett. 29 (1996) p. 165.Google Scholar
3Sternitzke, M., J. Eur. Ceram. Soc. 17 (1997) p. 1061.CrossRefGoogle Scholar
4Riedel, R., Kleebe, H.-J., Schonfelder, H., and , Aldinger, Nature 374 (1995) p. 526.Google Scholar
5Niihara, K., J. Ceram. Soc. Jpn. 99 (1991) p. 974.CrossRefGoogle Scholar
6Lambeth, D.N., Velu, E.M.T., Bellesis, G.H., Lee, L.L., and Laughlin, D.E., J. Appl. Phys. 79 (1996) p. 4496.Google Scholar
7Meldrum, A., Boatner, L.A., and White, C.W., Nucl. Instrum. Methods Phys. Res., Sect. B 178 (2001) p. 7.CrossRefGoogle Scholar
8Özkar, S., Ozin, G.A., and Prokopowicz, R.A., Chem. Mater. 4 (1992) p. 1380.Google Scholar
9Mayo, M.J., Int. Mat. Rev. 41 (1996) p. 85.CrossRefGoogle Scholar
10Kingery, W.D., Bowen, H.K., and Uhlmann, D., Introduction to Ceramics, 2nd ed. (John Wiley & Sons, New York, 1976) p. 486.Google Scholar
11Groza, J.R., Nanostruct. Mater. 12 (1999) p. 987.Google Scholar
12Koch, C.C., Nanostruct. Mater. 2 (1993) p. 109.CrossRefGoogle Scholar
13Groza, J.R. and Dowding, R.J., Nanostruct. Mater. 7 (1996) p. 749.CrossRefGoogle Scholar
14Chen, D.-J. and Mayo, M.J., Nanostruct. Mater. 2 (1993) p. 469.Google Scholar
15Skandan, G., Hahn, H., Kear, B.H., Roddy, M., and Cannon, W.R., Mater. Lett. 20 (1994) p. 305.CrossRefGoogle Scholar
16Risbud, S.H., Shan, C.-H., and Mukherjee, A., J. Mater. Res. 10 (1995) p. 237.Google Scholar
17Westerlund, J. and Vimercati, A., Metal Powder Report 55 (2) (2000) p. 14.Google Scholar
18Jones, A.H., Dobedoe, R.S., and Lewis, M.H., J. Eur. Ceram. Soc. 21 (2001) p. 969.Google Scholar
19Vassen, R. and Stöver, D., Mater. Sci. Eng., A 301 (2001) p. 59.Google Scholar
20Hoffmann, M.J., Geyer, A., and Oberacker, R., J. Eur. Ceram. Soc. 19 (1999) p. 2359.CrossRefGoogle Scholar
21Burger, P., Duclos, R., and Crampon, J., Mater. Sci. Eng., A 222 (1997) p. 175.CrossRefGoogle Scholar
22Oehring, M., Appel, F., Pfullmann, Th., and Bormann, R., Appl. Phys. Lett. 66 (1995) p. 941.CrossRefGoogle Scholar
23Suryanarayana, C., Korth, G.E., and Froes, F.H., Metall. Mater. Trans. A 28A (1997) p. 293.Google Scholar
24Carsley, J.E., Milligan, W.W., Hackney, S.A., and Aifantis, E.C., Metall. Mater. Trans. A 26A (1995) p. 2479.CrossRefGoogle Scholar
25Skandan, G., Nanostruct. Mater. 5 (1995) p. 111.CrossRefGoogle Scholar
26He, L. and Ma, E., J. Mater. Res. 11 (1996) p. 72.CrossRefGoogle Scholar
27Shaik, G.R. and Milligan, W.W., Metall. Mater. Trans. A 28A (1997) p. 895.Google Scholar
28Xu, Y., Zangvil, A., and Kerber, A., J. Eur. Ceram. Soc. 17 (1997) p. 921.CrossRefGoogle Scholar
29Krasnowski, M. and Kulik, T., Scripta Mater. 48 (2003) p. 1489.CrossRefGoogle Scholar
30Liao, S.-C., Pae, K.D., and Mayo, W.E., Nanostruct. Mater. 8 (1997) p. 645.Google Scholar
31Kear, B.H., Colaizzi, J., Mayo, W.E., and Liao, S.-C., Scripta Mater. 44 (2001) p. 2065.Google Scholar
32Wang, S.W., Chen, L.D., and Hirai, T., J. Mater. Res. 15 (2000) p. 982.CrossRefGoogle Scholar
33Omori, M., Mater. Sci. Eng., A 287 (2000) p. 183.CrossRefGoogle Scholar
34Gao, L., Wang, H., Kawaoka, H., Sekino, T., and Niihara, K., J. Eur. Ceram. Soc. 22 (2002) p. 785.CrossRefGoogle Scholar
35Risbud, S.H., Groza, J.R., and Kim, M.J., Philos. Mag. B 69 (1994) p. 525.Google Scholar
36Mishra, R.S. and Mukherjee, A.K., Mater. Sci. Eng., A 287 (2000) p. 178.Google Scholar
37Goodwin, T.-J., Yoo, S.H., Matteazzi, P., and Groza, J.R., Nanostruct. Mater. 8 (1997) p. 559.CrossRefGoogle Scholar
38Cha, S.I., Hong, S.H., and Kim, B.K., Mater. Sci. Eng., A 351 (2003) p. 31.CrossRefGoogle Scholar
39Yoo, S.H., Sundaram, T.S., Sethuram, K., Subhash, G., and Dowding, R.J., Nanostruct. Mater. 12 (1999) p. 23.CrossRefGoogle Scholar
40Valiev, R.Z., Mishra, R.S., Groza, J.R., and Mukherjee, A.K., Scripta Mater. 34 (1996) p. 1443.CrossRefGoogle Scholar
41Alexandrov, I.V., Zhu, Y.T., Lowe, T.C., Islamgaliev, R.K., and Valiev, R.Z., Metall. Mater. Trans. A 29A (1998) p. 2253.Google Scholar
42Alexandrov, I.V., Zhu, Y.T., Lowe, T.C., Islamgaliev, R.K., and Valiev, R.Z., Nanostruct. Mater. 10 (1998) p. 45.Google Scholar
43Agrawal, D.K., Curr. Opin. Solid State Mater. 3 (1998) p. 480.Google Scholar
44Lewis, D., Rayne, R.J., Bender, B.A., Kurihara, L.K., Chow, G.-M., Fliflet, A., Kincaid, A., and Bruce, R., Nanostruct. Mater. 9 (1997) p. 97.Google Scholar
45Boch, Ph. and Lequeux, N., Solid State Ionics 101–103 (1997) p. 1229.Google Scholar
46Jones, M.I., Valecillos, M.-C., Hirao, K., and Yamauchi, Y., J. Eur. Ceram. Soc. 22 (2002) p. 2981.CrossRefGoogle Scholar
47Bykov, Yu., Eremeev, A., Egorov, S., Ivanov, V., Kotov, Yu., Khrustov, V., and Sorokin, A., Nanostruct. Mater. 12 (1999) p. 115.Google Scholar
48Gourdin, W.H., Prog. Mater. Sci. 30 (1986) p. 39.CrossRefGoogle Scholar
49Glade, S.C. and Thadhani, N.N., Metall. Mater. Trans. A 26A (1995) p. 2565.Google Scholar
50Korth, G.E. and Williamson, R.L., Metall. Mater. Trans. A 26A (1995) p. 2571.Google Scholar
51Jain, M. and Christman, T., Acta Metall. Mater. 42 (1994) p. 1901.CrossRefGoogle Scholar
52Mazumder, J., in Metallurgical and Ceramic Protective Coatings, edited by Stern, K.H. (Chapman & Hall, London, 1996) p. 74.Google Scholar
53Agarwal, A. and Dahotre, N.B., Int. J. Refract. Met. Hard Mater. 17 (1999) p. 283.Google Scholar
54Cai, K., Guo, D., Huang, Y., and Yang, J., J. Eur. Ceram. Soc. 23 (2003) p. 921.Google Scholar
55Mayne, M., Bahloul-Hourlier, D., Doucey, B., Goursat, P., Cauchetier, M., and Herlin, N., J. Eur. Ceram. Soc. 18 (1998) p. 1187.Google Scholar
56Seal, S., Kuiry, S.C., Georgieva, P., and Rea, K., “Ni-Alumina Nanocomposite by In Situ Formation of Ni Nanoparticles during Thermal Processing” (unpublished manuscript).Google Scholar
57Sampath, S. and Herman, H., JOM 45 (7) (1993) p. 42.Google Scholar
58Smagorinski, M., Tasantrizos, P., Grenier, S., Entezarian, M., and Ajersh, F., JOM 48 (6) (1996) p. 56.CrossRefGoogle Scholar
59Agarwal, A. and McKechnie, T., Adv. Mater. Processes 159 (2001) p. 44.Google Scholar
60Hickman, R., McKechnie, T., and Agarwal, A., “Net Shape Fabrication of High Temperature Materials for Rocket Engine Components,” presented at 37th AIAA/ASME/SAE/ASEE/Joint Propulsion Conf., Salt Lake City, Utah, July 8–11, 2001, paper No. AIAA-2001-3435.Google Scholar
61Smith, R.W. and Knight, R., JOM 47 (8) (1995) p. 32.Google Scholar
62Lima, R.S., Kucuk, A., Senturk, U., and Berndt, C.C., J. Thermal Spray Technol. 10 (1) (2001) p. 150.Google Scholar
63He, J., Ice, M., Schoenung, J.M., Shin, D.H., and Lavernia, E.J., J. Thermal Spray Technol. 10 (2) (2001) p. 293.Google Scholar
64Wang, Y., Jiang, S., Wang, M., Wang, S., Xiao, T.D., and Strutt, P.R., Wear 237 (2000) p. 176.Google Scholar
65Chen, H. and Ding, C.X., Surf. Coat. Technol. 150 (2002) p. 31.Google Scholar
66Shaw, L.L., Goberman, D., Ren, R., Gell, M., Jiang, S., Wang, Y., Xiao, T.D., and Strutt, P.R., Surf. Coat. Technol. 130 (2000) p. 1.Google Scholar
67Knight, R., Petrovicova, E., Xiaohua, E., Twardowski, T.T., Schandler, L.S., and Hanlon, T., J. Thermal Spray Technol. 10 (1) (2001) p. 170.Google Scholar
68Agarwal, A., McKechnie, T., and Seal, S., JOM 54 (2002) p. 42.Google Scholar
69Agarwal, A., McKechnie, T., and Seal, S., J. Thermal Spray Technol. 12 (3) (2003) p. 350Google Scholar